Skip to main content
Erschienen in: Journal of Materials Science 29/2020

15.07.2020 | Materials for life sciences

Microstructure, mechanical properties and in vitro biocompatibilities of a novel bionic hydroxyapatite bone scaffold prepared by the addition of boron nitride

verfasst von: Changbo Wang, Jinyang Feng, Jian Zhou, Xiaoguang Huang, Lin Wang, Guizhen Liu, Jiping Cheng

Erschienen in: Journal of Materials Science | Ausgabe 29/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydroxyapatite (HA) is an ideal bone insert material due to its biocompatibility and osteoconductivity, but the poor mechanical properties limit its wide application in clinical practice. The aim of this work is to fabricate a novel composite that with similar porous structure to cortical bone and high mechanical properties by the addition of boron nitride (BN) and sintered in air at 1250 °C for 40 min. In mechanical properties, the maximum flexural strength, elastic modulus and fracture toughness are 94.04 MPa, 69.46 GPa and 1.16 MPa m1/2, respectively, which are improved by 20.56%, 12.87% and 8.41%, respectively. In the microscopy of surface and fracture surface, the porous structure similar to cortical bone is observed. There are microscale and nanoscale pores, and the pores present an interconnected structure. In vitro biocompatibility assessment, the addition of BN and its reaction product have no adverse effect on osteoblast viability, which even promotes osteogenic differentiation and mineralization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Garcia-Gareta E, Coathup MJ, Blunn GW (2015) Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 81:112–121 Garcia-Gareta E, Coathup MJ, Blunn GW (2015) Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 81:112–121
2.
Zurück zum Zitat Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng, C 31:1245–1256 Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng, C 31:1245–1256
3.
Zurück zum Zitat Johnson AJW, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7:16–30 Johnson AJW, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7:16–30
4.
Zurück zum Zitat Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774 Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774
5.
Zurück zum Zitat Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543 Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543
6.
Zurück zum Zitat Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431 Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431
7.
Zurück zum Zitat Sansone V, Pagani D, Melato M (2013) The effects on bone cells of metal ions released from orthopaedic implants. A review. Clinic Cases Min Bone Metab 10:34–40 Sansone V, Pagani D, Melato M (2013) The effects on bone cells of metal ions released from orthopaedic implants. A review. Clinic Cases Min Bone Metab 10:34–40
8.
Zurück zum Zitat Boger A, Bohner M, Heini P, Verrier S, Schneider E (2008) Properties of an injectable low modulus PMMA bone cement for osteoporotic bone. J Biomed Mater Res Part B 86B:474–482 Boger A, Bohner M, Heini P, Verrier S, Schneider E (2008) Properties of an injectable low modulus PMMA bone cement for osteoporotic bone. J Biomed Mater Res Part B 86B:474–482
9.
Zurück zum Zitat Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Pt B Polym Phys 49:832–864 Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Pt B Polym Phys 49:832–864
10.
Zurück zum Zitat Wang KF, Zhou CC, Hong YL, Zhang XD (2012) A review of protein adsorption on bioceramics. Interface Focus 2:259–277 Wang KF, Zhou CC, Hong YL, Zhang XD (2012) A review of protein adsorption on bioceramics. Interface Focus 2:259–277
11.
Zurück zum Zitat Samavedi S, Whittington AR, Goldstein AS (2013) Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 9:8037–8045 Samavedi S, Whittington AR, Goldstein AS (2013) Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 9:8037–8045
12.
Zurück zum Zitat Barrere F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Namomed 1:317–332 Barrere F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Namomed 1:317–332
13.
Zurück zum Zitat Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 46:386–395 Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 46:386–395
14.
Zurück zum Zitat Kim HW, Kim HE, Salih V (2005) Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials 26:5221–5230 Kim HW, Kim HE, Salih V (2005) Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials 26:5221–5230
15.
Zurück zum Zitat Bellucci D, Sola A, Cannillo V (2016) Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: state of the art and current applications. J Biomed Mater Res Part A 104:1030–1056 Bellucci D, Sola A, Cannillo V (2016) Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: state of the art and current applications. J Biomed Mater Res Part A 104:1030–1056
16.
Zurück zum Zitat Tan LL, Yu XM, Wan P, Yang K (2013) Biodegradable materials for bone repairs: a review. J Mater Sci Technol 29:503–513 Tan LL, Yu XM, Wan P, Yang K (2013) Biodegradable materials for bone repairs: a review. J Mater Sci Technol 29:503–513
17.
Zurück zum Zitat Chadha RK, Singh AP, Singh KL, Sharma C, Naithani V (2019) Influence of microwave processing and sintering temperature on the structure and properties of Sr/Zr doped hydroxyapatite. Mater Chem Phys 223:319–324 Chadha RK, Singh AP, Singh KL, Sharma C, Naithani V (2019) Influence of microwave processing and sintering temperature on the structure and properties of Sr/Zr doped hydroxyapatite. Mater Chem Phys 223:319–324
18.
Zurück zum Zitat Lahiri D, Singh V, Benaduce AP, Seal S, Kos L, Agarwal A (2011) Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts. J Mech Behav Biomed Mater 4:44–56 Lahiri D, Singh V, Benaduce AP, Seal S, Kos L, Agarwal A (2011) Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts. J Mech Behav Biomed Mater 4:44–56
19.
Zurück zum Zitat Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L (2015) Fabrication, properties and applications of dense hydroxyapatite: a review. J Funct Biomater 6:1099–1140 Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L (2015) Fabrication, properties and applications of dense hydroxyapatite: a review. J Funct Biomater 6:1099–1140
20.
Zurück zum Zitat Bose S, Dasgupta S, Tarafder S, Bandyopadhyay A (2010) Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties. Acta Biomater 6:3782–3790 Bose S, Dasgupta S, Tarafder S, Bandyopadhyay A (2010) Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties. Acta Biomater 6:3782–3790
21.
Zurück zum Zitat Wang J, Shaw LL (2009) Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials 30:6565–6572 Wang J, Shaw LL (2009) Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials 30:6565–6572
22.
Zurück zum Zitat Lahiri D, Rouzaud F, Richard T, Keshri AK, Bakshi SR, Kos L, Agarwal A (2010) Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater 6:3524–3533 Lahiri D, Rouzaud F, Richard T, Keshri AK, Bakshi SR, Kos L, Agarwal A (2010) Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater 6:3524–3533
23.
Zurück zum Zitat Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151 Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151
24.
Zurück zum Zitat Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102 Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102
25.
Zurück zum Zitat Wang XJ, Xu SQ, Zhou SW, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141 Wang XJ, Xu SQ, Zhou SW, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141
26.
Zurück zum Zitat Prajatelistia E, Han Y-H, Kim BN, Kim Y-M, Lee K, Jeong Y-K, Kim D-I, Kim K-H, Kim S (2013) Characterization of boron nitride-reinforced hydroxyapatite composites prepared by spark plasma sintering and hot press. J Ceram Soc Jpn 121:344–347 Prajatelistia E, Han Y-H, Kim BN, Kim Y-M, Lee K, Jeong Y-K, Kim D-I, Kim K-H, Kim S (2013) Characterization of boron nitride-reinforced hydroxyapatite composites prepared by spark plasma sintering and hot press. J Ceram Soc Jpn 121:344–347
27.
Zurück zum Zitat Danti S, Ciofani G, Moscato S, D'Alessandro D, Ciabatti E, Nesti C, Brescia R, Bertoni G, Pietrabissa A, Lisanti M, Petrini M, Mattoli V, Berrettini S (2013) Boron nitride nanotubes and primary human osteoblasts: in vitro compatibility and biological interactions under low frequency ultrasound stimulation. Nanotechnology 24:465102 Danti S, Ciofani G, Moscato S, D'Alessandro D, Ciabatti E, Nesti C, Brescia R, Bertoni G, Pietrabissa A, Lisanti M, Petrini M, Mattoli V, Berrettini S (2013) Boron nitride nanotubes and primary human osteoblasts: in vitro compatibility and biological interactions under low frequency ultrasound stimulation. Nanotechnology 24:465102
28.
Zurück zum Zitat Mergen A, Aslanoglu VZ (2003) Low-temperature fabrication of anorthite ceramics from kaolinite and calcium carbonate with boron oxide addition. Ceram Int 29:667–670 Mergen A, Aslanoglu VZ (2003) Low-temperature fabrication of anorthite ceramics from kaolinite and calcium carbonate with boron oxide addition. Ceram Int 29:667–670
29.
Zurück zum Zitat Liu SJ, Sun J, Taylor R, Smith DJ, Newman N (2004) Microstructure and dielectric properties of Ba(Cd1/3Ta2/3)O3 microwave ceramics synthesized with a boron oxide sintering aid. J Mater Res 19:3526–3533 Liu SJ, Sun J, Taylor R, Smith DJ, Newman N (2004) Microstructure and dielectric properties of Ba(Cd1/3Ta2/3)O3 microwave ceramics synthesized with a boron oxide sintering aid. J Mater Res 19:3526–3533
30.
Zurück zum Zitat Soykan HS, Aslanoglu Z, Karakas Y (2006) Microstructure, mechanical and thermal properties of boron oxide added steatite ceramics. Adv Appl Ceram 105:270–273 Soykan HS, Aslanoglu Z, Karakas Y (2006) Microstructure, mechanical and thermal properties of boron oxide added steatite ceramics. Adv Appl Ceram 105:270–273
31.
Zurück zum Zitat Gao JJ, Song JP, Liang GX, An J, Cao L, Xie JC, Lv M (2017) Effects of HfC addition on microstructures and mechanical properties of TiC0.7N0.3-based and TiC0.5N0.5-based ceramic tool materials. Ceram Int 43:14945–14950 Gao JJ, Song JP, Liang GX, An J, Cao L, Xie JC, Lv M (2017) Effects of HfC addition on microstructures and mechanical properties of TiC0.7N0.3-based and TiC0.5N0.5-based ceramic tool materials. Ceram Int 43:14945–14950
32.
Zurück zum Zitat Nie JF, Zhou J, Huang XG, Wang L, Liu GZ, Cheng JP (2019) Effect of TiO2 doping on densification and mechanical properties of hydroxyapatite by microwave sintering. Ceram Int 45:13647–13655 Nie JF, Zhou J, Huang XG, Wang L, Liu GZ, Cheng JP (2019) Effect of TiO2 doping on densification and mechanical properties of hydroxyapatite by microwave sintering. Ceram Int 45:13647–13655
33.
Zurück zum Zitat Li K, Hu DD, Xie YT, Huang LP, Zheng XB (2018) Sr-doped nanowire modification of Ca-Si-based coatings for improved osteogenic activities and reduced inflammatory reactions. Nanotechnology 29:084001 Li K, Hu DD, Xie YT, Huang LP, Zheng XB (2018) Sr-doped nanowire modification of Ca-Si-based coatings for improved osteogenic activities and reduced inflammatory reactions. Nanotechnology 29:084001
34.
Zurück zum Zitat Liu T, Chen Y, Lai D, Zhang L, Pan X, Chen J, Weng H (2019) Biomimetic fabrication of new bioceramics-introduced fibrous scaffolds: From physicochemical characteristics to in vitro biological properties. Mater Sci Eng C Mater Biol Appl 94:547–557 Liu T, Chen Y, Lai D, Zhang L, Pan X, Chen J, Weng H (2019) Biomimetic fabrication of new bioceramics-introduced fibrous scaffolds: From physicochemical characteristics to in vitro biological properties. Mater Sci Eng C Mater Biol Appl 94:547–557
35.
Zurück zum Zitat Wang PJ, Yu TB, Lv QL, Li SK, Ma XX, Yang GP, Xu DX, Liu X, Wang GT, Chen ZQ, Xing SC (2019) Fabrication of hydroxyapatite/hydrophilic graphene composites and their modulation to cell behavior toward bone reconstruction engineering. Colloid Surf B Biointerfaces 173:512–520 Wang PJ, Yu TB, Lv QL, Li SK, Ma XX, Yang GP, Xu DX, Liu X, Wang GT, Chen ZQ, Xing SC (2019) Fabrication of hydroxyapatite/hydrophilic graphene composites and their modulation to cell behavior toward bone reconstruction engineering. Colloid Surf B Biointerfaces 173:512–520
36.
Zurück zum Zitat Xie XY, Hu KW, Fang DD, Shang LH, Tran SD, Cerruti M (2015) Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale 7:7992–8002 Xie XY, Hu KW, Fang DD, Shang LH, Tran SD, Cerruti M (2015) Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale 7:7992–8002
37.
Zurück zum Zitat Ribeiro CC, Gibson I, Barbosa MA (2006) The uptake of titanium ions by hydroxyapatite particles—structural changes and possible mechanisms. Biomaterials 27:1749–1761 Ribeiro CC, Gibson I, Barbosa MA (2006) The uptake of titanium ions by hydroxyapatite particles—structural changes and possible mechanisms. Biomaterials 27:1749–1761
38.
Zurück zum Zitat Jun L, Shuping X, Shiyang G (1995) FT-IR and Raman spectroscopic study of hydrated borates. Spectrochim Acta Part A Mol Biomol Spectrosc 51:519–532 Jun L, Shuping X, Shiyang G (1995) FT-IR and Raman spectroscopic study of hydrated borates. Spectrochim Acta Part A Mol Biomol Spectrosc 51:519–532
39.
Zurück zum Zitat Prakash A, Sundaram KB (2017) Optical and XPS studies of BCN thin films by co-sputtering of B4C and BN targets. Appl Surf Sci 396:484–491 Prakash A, Sundaram KB (2017) Optical and XPS studies of BCN thin films by co-sputtering of B4C and BN targets. Appl Surf Sci 396:484–491
40.
Zurück zum Zitat Guimon C, Gonbeau D, Pfisterguillouzo G, Dugne O, Guette A, Naslain R, Lahaye M (1990) XPS study of BN thin-films deposited by CVD on SiC plane substrates. Surf Interface Anal 16:440–445 Guimon C, Gonbeau D, Pfisterguillouzo G, Dugne O, Guette A, Naslain R, Lahaye M (1990) XPS study of BN thin-films deposited by CVD on SiC plane substrates. Surf Interface Anal 16:440–445
41.
Zurück zum Zitat Zhang CY, Zhong XL, Wang JB, Yang GW (2003) Room-temperature growth of cubic nitride boron film by RF plasma enhanced pulsed laser deposition. Chem Phys Lett 370:522–527 Zhang CY, Zhong XL, Wang JB, Yang GW (2003) Room-temperature growth of cubic nitride boron film by RF plasma enhanced pulsed laser deposition. Chem Phys Lett 370:522–527
42.
Zurück zum Zitat Cooper DML, Matyas JR, Katzenberg MA, Hallgrimsson B (2004) Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity. Calcif Tissue Int 74:437–447 Cooper DML, Matyas JR, Katzenberg MA, Hallgrimsson B (2004) Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity. Calcif Tissue Int 74:437–447
43.
Zurück zum Zitat Heidari F, Razavi M, Bahrololoom ME, Bazargan-Lari R, Vashaee D, Kotturi H, Tayebi L (2016) Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 65:338–344 Heidari F, Razavi M, Bahrololoom ME, Bazargan-Lari R, Vashaee D, Kotturi H, Tayebi L (2016) Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 65:338–344
44.
Zurück zum Zitat Murugan R, Ramakrishna S (2005) Development of nanocomposites for bone grafting. Compos Sci Technol 65:2385–2406 Murugan R, Ramakrishna S (2005) Development of nanocomposites for bone grafting. Compos Sci Technol 65:2385–2406
45.
Zurück zum Zitat R'Mili M, Massardier V, Merle P, Vincent H, Vincent C (1999) The effect of thermal exposure on the strength distribution of B4C-coated carbon fibers. Carbon 37:129–145 R'Mili M, Massardier V, Merle P, Vincent H, Vincent C (1999) The effect of thermal exposure on the strength distribution of B4C-coated carbon fibers. Carbon 37:129–145
46.
Zurück zum Zitat Araujo M, Karohl C, Elias RM, Barreto FC, Barreto DV, Canziani MEF, Carvalho AB, Jorgetti V, Moyses RMA (2016) The pitfall of treating low bone turnover: effects on cortical porosity. Bone 91:75–80 Araujo M, Karohl C, Elias RM, Barreto FC, Barreto DV, Canziani MEF, Carvalho AB, Jorgetti V, Moyses RMA (2016) The pitfall of treating low bone turnover: effects on cortical porosity. Bone 91:75–80
47.
Zurück zum Zitat Chen WQ, Shao Y, Li X, Zhao G, Fu JP (2014) Nanotopographical surfaces for stem cell fate control: engineering mechanobiology from the bottom. Nano Today 9:759–784 Chen WQ, Shao Y, Li X, Zhao G, Fu JP (2014) Nanotopographical surfaces for stem cell fate control: engineering mechanobiology from the bottom. Nano Today 9:759–784
48.
Zurück zum Zitat Lord MS, Foss M, Besenbacher F (2010) Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5:66–78 Lord MS, Foss M, Besenbacher F (2010) Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5:66–78
49.
Zurück zum Zitat Arens D, Rothstock S, Windolf M, Boger A (2011) Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone. J Mech Behav Biomed Mater 4:2081–2089 Arens D, Rothstock S, Windolf M, Boger A (2011) Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone. J Mech Behav Biomed Mater 4:2081–2089
50.
Zurück zum Zitat Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854 Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854
51.
Zurück zum Zitat Yao YT, Liu S, Swain MV, Zhang XP, Zhao K, Jian YT (2019) Effects of acid-alkali treatment on bioactivity and osteoinduction of porous titanium: an in vitro study. Mater Sci Eng C Mater Biol Appl 94:200–210 Yao YT, Liu S, Swain MV, Zhang XP, Zhao K, Jian YT (2019) Effects of acid-alkali treatment on bioactivity and osteoinduction of porous titanium: an in vitro study. Mater Sci Eng C Mater Biol Appl 94:200–210
52.
Zurück zum Zitat Song J, Jiang L, Liang G, Gao J, An J, Cao L, Xie J, Wang S, Lv M (2017) Strengthening and toughening of TiN-based and TiB2-based ceramic tool materials with HfC additive. Ceram Int 43:8202–8207 Song J, Jiang L, Liang G, Gao J, An J, Cao L, Xie J, Wang S, Lv M (2017) Strengthening and toughening of TiN-based and TiB2-based ceramic tool materials with HfC additive. Ceram Int 43:8202–8207
53.
Zurück zum Zitat Aguirre TG, Cramer CL, Torres VP, Hammann TJ, Holland TB, Ma K (2019) Effects of the addition of boron nitride nanoplate on the fracture toughness, flexural strength, and Weibull Distribution of hydroxyapatite composites prepared by spark plasma sintering. J Mech Behav Biomed Mater 93:105–117 Aguirre TG, Cramer CL, Torres VP, Hammann TJ, Holland TB, Ma K (2019) Effects of the addition of boron nitride nanoplate on the fracture toughness, flexural strength, and Weibull Distribution of hydroxyapatite composites prepared by spark plasma sintering. J Mech Behav Biomed Mater 93:105–117
54.
Zurück zum Zitat Ramesh S, Tan CY, Bhaduri SB, Teng WD, Sopyan I (2008) Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J Mater Process Technol 206:221–230 Ramesh S, Tan CY, Bhaduri SB, Teng WD, Sopyan I (2008) Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J Mater Process Technol 206:221–230
55.
Zurück zum Zitat Lahiri D, Rouzaud F, Richard T, Keshri AK, Bakshi SR, Kos L, Agarwal A (2010) Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater 6:3524–3533 Lahiri D, Rouzaud F, Richard T, Keshri AK, Bakshi SR, Kos L, Agarwal A (2010) Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater 6:3524–3533
56.
Zurück zum Zitat Tozar A, Karahan İH (2018) A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydroxyapatite/chitosan biocomposite coating. Appl Surf Sci 452:322–336 Tozar A, Karahan İH (2018) A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydroxyapatite/chitosan biocomposite coating. Appl Surf Sci 452:322–336
57.
Zurück zum Zitat Boyacioglu O, Orenay-Boyacioglu S, Yildirim H, Korkmaz M (2018) Boron intake, osteocalcin polymorphism and serum level in postmenopausal osteoporosis. J Trace Elem Med Biol 48:52–56 Boyacioglu O, Orenay-Boyacioglu S, Yildirim H, Korkmaz M (2018) Boron intake, osteocalcin polymorphism and serum level in postmenopausal osteoporosis. J Trace Elem Med Biol 48:52–56
58.
Zurück zum Zitat Alves EGL, Serakides R, Rosado IR, Pereira MM, Ocarino NM, Oliveira HP, Goes AM, Rezende CMF (2015) Effect of the ionic product of bioglass 60s on osteoblastic activity in canines. BMC Vet Res 11:234–247 Alves EGL, Serakides R, Rosado IR, Pereira MM, Ocarino NM, Oliveira HP, Goes AM, Rezende CMF (2015) Effect of the ionic product of bioglass 60s on osteoblastic activity in canines. BMC Vet Res 11:234–247
59.
Zurück zum Zitat Franceschi RT, Ge CX, Xiao GZ, Roca H, Jiang D (2009) Transcriptional regulation of osteoblasts. Cells Tissues Organs 189:144–152 Franceschi RT, Ge CX, Xiao GZ, Roca H, Jiang D (2009) Transcriptional regulation of osteoblasts. Cells Tissues Organs 189:144–152
60.
Zurück zum Zitat Liu QH, Cen L, Yin S, Chen L, Liu GP, Chang J, Cui L (2008) A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. Biomaterials 29:4792–4799 Liu QH, Cen L, Yin S, Chen L, Liu GP, Chang J, Cui L (2008) A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. Biomaterials 29:4792–4799
61.
Zurück zum Zitat Li HW, Sun JY (2011) Effects of dicalcium silicate coating ionic dissolution products on juman mesenchymal stem-cell proliferation and osteogenic differentiation. J Int Med Res 39:112–128 Li HW, Sun JY (2011) Effects of dicalcium silicate coating ionic dissolution products on juman mesenchymal stem-cell proliferation and osteogenic differentiation. J Int Med Res 39:112–128
62.
Zurück zum Zitat Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26:4847–4855 Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26:4847–4855
63.
Zurück zum Zitat Cortizo AM, Molinuevo MS, Barrio DA, Bruzzone L (2006) Osteogenic activity of vanadyl(IV)-ascorbate complex: evaluation of its mechanism of action. Int J Biochem Cell Biol 38:1171–1180 Cortizo AM, Molinuevo MS, Barrio DA, Bruzzone L (2006) Osteogenic activity of vanadyl(IV)-ascorbate complex: evaluation of its mechanism of action. Int J Biochem Cell Biol 38:1171–1180
64.
Zurück zum Zitat Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576 Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576
65.
Zurück zum Zitat Valerio P, Pereira MM, Goes AM, Leite MF (2009) Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts. Biomed Mater 4:045011 Valerio P, Pereira MM, Goes AM, Leite MF (2009) Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts. Biomed Mater 4:045011
66.
Zurück zum Zitat Choi MK, Kim MH, Kang MH (2005) The effect of boron supplementation on bone strength in ovariectomized rats fed with diets containing different calcium levels. Food Sci Biotechnol 14:242–248 Choi MK, Kim MH, Kang MH (2005) The effect of boron supplementation on bone strength in ovariectomized rats fed with diets containing different calcium levels. Food Sci Biotechnol 14:242–248
67.
Zurück zum Zitat Uysal T, Ustdal A, Sonmez MF, Ozturk F (2009) Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod 79:984–990 Uysal T, Ustdal A, Sonmez MF, Ozturk F (2009) Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod 79:984–990
68.
Zurück zum Zitat Chen C, Watkins-Curry P, Smoak M, Hogan K, Deese S, McCandless GT, Chan JY, Hayes DJ (2015) Targeting calcium magnesium silicates for polycaprolactone/ceramic composite scaffolds. Acs Biomater Sci Eng 1:94–102 Chen C, Watkins-Curry P, Smoak M, Hogan K, Deese S, McCandless GT, Chan JY, Hayes DJ (2015) Targeting calcium magnesium silicates for polycaprolactone/ceramic composite scaffolds. Acs Biomater Sci Eng 1:94–102
69.
Zurück zum Zitat Houreh AB, Labbaf S, Ting HK, Ejeian F, Jones JR, Esfahani MHN (2017) Influence of calcium and phosphorus release from bioactive glasses on viability and differentiation of dental pulp stem cells. J Mater Sci 52:8928–8941 Houreh AB, Labbaf S, Ting HK, Ejeian F, Jones JR, Esfahani MHN (2017) Influence of calcium and phosphorus release from bioactive glasses on viability and differentiation of dental pulp stem cells. J Mater Sci 52:8928–8941
70.
Zurück zum Zitat Allo BA, Lin SG, Mequanint K, Rizkalla AS (2013) Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression. Acs Appl Mater Interfaces 5:7574–7583 Allo BA, Lin SG, Mequanint K, Rizkalla AS (2013) Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression. Acs Appl Mater Interfaces 5:7574–7583
71.
Zurück zum Zitat Isaac J, Nohra J, Lao J, Jallot E, Nedelec JM, Berdal A, Sautier JM (2011) Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cells Mater 21:130–143 Isaac J, Nohra J, Lao J, Jallot E, Nedelec JM, Berdal A, Sautier JM (2011) Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cells Mater 21:130–143
Metadaten
Titel
Microstructure, mechanical properties and in vitro biocompatibilities of a novel bionic hydroxyapatite bone scaffold prepared by the addition of boron nitride
verfasst von
Changbo Wang
Jinyang Feng
Jian Zhou
Xiaoguang Huang
Lin Wang
Guizhen Liu
Jiping Cheng
Publikationsdatum
15.07.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 29/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05015-5

Weitere Artikel der Ausgabe 29/2020

Journal of Materials Science 29/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.