Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2015

01.04.2015

Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy

verfasst von: Xiaohui Shi, Weidong Zeng, Yu Sun, Yuanfei Han, Yongqing Zhao, Ping Guo

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Finding the quantitative microstructure-tensile properties correlations is the key to achieve performance optimization for various materials. However, it is extremely difficult due to their non-linear and highly interactive interrelations. In the present investigation, the lamellar microstructure features-tensile properties correlations of the Ti-6Al-4V alloy are studied using an error back-propagation artificial neural network (ANN-BP) model. Forty-eight thermomechanical treatments were conducted to prepare the Ti-6Al-4V alloy with different lamellar microstructure features. In the proposed model, the input variables are microstructure features including the α platelet thickness, colony size, and β grain size, which were extracted using Image Pro Plus software. The output variables are the tensile properties, including ultimate tensile strength, yield strength, elongation, and reduction of area. Fourteen hidden-layer neurons which can make ANN-BP model present the most excellent performance were applied. The training results show that all the relative errors between the predicted and experimental values are within 6%, which means that the trained ANN-BP model is capable of providing precise prediction of the tensile properties for Ti-6Al-4V alloy. Based on the corresponding relations between the tensile properties predicted by ANN-BP model and the lamellar microstructure features, it can be found that the yield strength decreases with increasing α platelet thickness continuously. However, the α platelet thickness exerts influence on the elongation in a more complicated way. In addition, for a given α platelet thickness, the yield strength and the elongation both increase with decreasing β grain size and colony size. In general, the β grain size and colony size play a more important role in affecting the tensile properties of Ti-6Al-4V alloy than the α platelet thickness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B.K. Singh and V. Singh, Effect of Fast Neutron Irradiation on Tensile Properties of AISI, 304 Stainless Steel and Alloy Ti-6Al-4V, Mater. Sci. Eng. A, 2011, 528, p 5336–5340CrossRef B.K. Singh and V. Singh, Effect of Fast Neutron Irradiation on Tensile Properties of AISI, 304 Stainless Steel and Alloy Ti-6Al-4V, Mater. Sci. Eng. A, 2011, 528, p 5336–5340CrossRef
2.
Zurück zum Zitat G. Lütjering, Property Optimization Through Microstructural Control in Titanium and Aluminum Alloys, Mater. Sci. Eng. A, 1999, 263, p 117–126CrossRef G. Lütjering, Property Optimization Through Microstructural Control in Titanium and Aluminum Alloys, Mater. Sci. Eng. A, 1999, 263, p 117–126CrossRef
3.
Zurück zum Zitat G. Lütjering, Influence of Processing on Microstructure and Mechanical Properties of (α + β) Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 32–45CrossRef G. Lütjering, Influence of Processing on Microstructure and Mechanical Properties of (α + β) Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 32–45CrossRef
4.
Zurück zum Zitat G. Lütjering and C.J. Williams, Titanium, Springer, Berlin, 2003, p 1–431 G. Lütjering and C.J. Williams, Titanium, Springer, Berlin, 2003, p 1–431
5.
Zurück zum Zitat R.R. Boyer and G.W. Kuhlman, Processing Properties Relationships of Ti-10V-2Fe-3Al, Metall. Mater. Trans. A., 1987, 18, p 2095–2103CrossRef R.R. Boyer and G.W. Kuhlman, Processing Properties Relationships of Ti-10V-2Fe-3Al, Metall. Mater. Trans. A., 1987, 18, p 2095–2103CrossRef
6.
Zurück zum Zitat W.F. Zhang, C.X. Cao, X.W. Li et al., The Structure Parameters and Mechanical Properties Prediction for Titanium Alloy, Rare Metal Mater. Eng., 2009, 38, p 972–975CrossRef W.F. Zhang, C.X. Cao, X.W. Li et al., The Structure Parameters and Mechanical Properties Prediction for Titanium Alloy, Rare Metal Mater. Eng., 2009, 38, p 972–975CrossRef
7.
Zurück zum Zitat Y. Sun, W.D. Zeng, Y.F. Han et al., Determination of the Influence of Processing Parameters on the Mechanical Properties of the Ti-6Al-4V Alloy Using an Artificial Neural Network, Comput. Mater. Sci., 2012, 60, p 239–244CrossRef Y. Sun, W.D. Zeng, Y.F. Han et al., Determination of the Influence of Processing Parameters on the Mechanical Properties of the Ti-6Al-4V Alloy Using an Artificial Neural Network, Comput. Mater. Sci., 2012, 60, p 239–244CrossRef
8.
Zurück zum Zitat Y. Sun, W.D. Zeng, Y.Q. Zhao et al., Modeling Constitutive Relationship of Ti40 Alloy Using Artificial Neural Network, Mater. Des., 2011, 32, p 1537–1541CrossRef Y. Sun, W.D. Zeng, Y.Q. Zhao et al., Modeling Constitutive Relationship of Ti40 Alloy Using Artificial Neural Network, Mater. Des., 2011, 32, p 1537–1541CrossRef
9.
Zurück zum Zitat Y.C. Zhu, W.D. Zeng, Y. Sun et al., Artificial Neural Network Approach to Predict the Flow Stress in the Isothermal Compression of As-Cast TC21 Titanium Alloy, Comput. Mater. Sci., 2011, 50, p 1785–1790CrossRef Y.C. Zhu, W.D. Zeng, Y. Sun et al., Artificial Neural Network Approach to Predict the Flow Stress in the Isothermal Compression of As-Cast TC21 Titanium Alloy, Comput. Mater. Sci., 2011, 50, p 1785–1790CrossRef
10.
Zurück zum Zitat H. Sheikh and S. Serajzadeh, Estimation of Flow Stress Behavior of AA5083 Using Artificial Neural Networks with Regard to Dynamic Strain Ageing Effect, J. Mater. Process. Technol., 2008, 196, p 115–119CrossRef H. Sheikh and S. Serajzadeh, Estimation of Flow Stress Behavior of AA5083 Using Artificial Neural Networks with Regard to Dynamic Strain Ageing Effect, J. Mater. Process. Technol., 2008, 196, p 115–119CrossRef
11.
Zurück zum Zitat Y. Sun, W.D. Zeng, Y.Q. Zhao et al., Development of Constitutive Relationship Model of Ti600 Alloy Using Artificial Neural Network, Comput. Mater. Sci., 2010, 48, p 686–691CrossRef Y. Sun, W.D. Zeng, Y.Q. Zhao et al., Development of Constitutive Relationship Model of Ti600 Alloy Using Artificial Neural Network, Comput. Mater. Sci., 2010, 48, p 686–691CrossRef
12.
Zurück zum Zitat M.E. Haque and K.V. Sudhakar, ANN Back-Propagation Prediction Model for Fracture Toughness in Microalloy Steel, Int. J. Fatigue, 2002, 24, p 1003–1010CrossRef M.E. Haque and K.V. Sudhakar, ANN Back-Propagation Prediction Model for Fracture Toughness in Microalloy Steel, Int. J. Fatigue, 2002, 24, p 1003–1010CrossRef
13.
Zurück zum Zitat K.X. Song, J.D. Xing, Q.M. Dong et al., Optimization of the Processing Parameters During Internal Oxidation of Cu-Al Alloy Powders Using an Artificial Neural Network, Mater. Des., 2005, 26, p 337–341CrossRef K.X. Song, J.D. Xing, Q.M. Dong et al., Optimization of the Processing Parameters During Internal Oxidation of Cu-Al Alloy Powders Using an Artificial Neural Network, Mater. Des., 2005, 26, p 337–341CrossRef
14.
Zurück zum Zitat A. Bahrami, S.H. Mousavi Anijdan, and A. Ekrami, Prediction of Mechanical Properties of DP Steels Using Neural Network Model, J. Alloys Compd., 2005, 392, p 177–182CrossRef A. Bahrami, S.H. Mousavi Anijdan, and A. Ekrami, Prediction of Mechanical Properties of DP Steels Using Neural Network Model, J. Alloys Compd., 2005, 392, p 177–182CrossRef
15.
Zurück zum Zitat W.D. Zeng, Y. Shu, and Y.G. Zhou, Artificial Neural Network Model for the Prediction of Mechanical Properties of Ti-10V-2Fe-3Al Titanium Alloy, Rare Metal Mater. Eng., 2004, 133, p 1041–1044 W.D. Zeng, Y. Shu, and Y.G. Zhou, Artificial Neural Network Model for the Prediction of Mechanical Properties of Ti-10V-2Fe-3Al Titanium Alloy, Rare Metal Mater. Eng., 2004, 133, p 1041–1044
16.
Zurück zum Zitat Y. Sun, W.D. Zeng, Y.F. Han et al., Optimization of Chemical Composition for TC11 Titanium Alloy Based on Artificial Neural Network and Genetic Algorithm, Comput. Mater. Sci., 2011, 50, p 1064–1069CrossRef Y. Sun, W.D. Zeng, Y.F. Han et al., Optimization of Chemical Composition for TC11 Titanium Alloy Based on Artificial Neural Network and Genetic Algorithm, Comput. Mater. Sci., 2011, 50, p 1064–1069CrossRef
17.
Zurück zum Zitat Y. Sun, W.D. Zeng, Y.F. Han et al., Modeling the Correlation Between Microstructure and the Properties of the Ti-6Al-4V Alloy Based on an Artificial Neural Network, Mater. Sci. Eng. A., 2011, 528, p 8757–8764CrossRef Y. Sun, W.D. Zeng, Y.F. Han et al., Modeling the Correlation Between Microstructure and the Properties of the Ti-6Al-4V Alloy Based on an Artificial Neural Network, Mater. Sci. Eng. A., 2011, 528, p 8757–8764CrossRef
18.
Zurück zum Zitat J.O. Peters and G. Lütjering, Comparison of the Fatigue and Fracture of α + β and β Titanium Alloys, Metall. Mater. Trans., 2001, 32, p 2805–2818CrossRef J.O. Peters and G. Lütjering, Comparison of the Fatigue and Fracture of α + β and β Titanium Alloys, Metall. Mater. Trans., 2001, 32, p 2805–2818CrossRef
19.
Zurück zum Zitat H.V. Atkinson, Overview No. 65: Theories of Normal Grain Growth in Pure Single Phase systems, Acta Metall., 1988, 36, p 469–491CrossRef H.V. Atkinson, Overview No. 65: Theories of Normal Grain Growth in Pure Single Phase systems, Acta Metall., 1988, 36, p 469–491CrossRef
20.
Zurück zum Zitat R.R. Boyer and D.R. Wallem, Microstructure/Property Relationships of Titanium Alloys, TMS, Warrendale, PA, 1994 R.R. Boyer and D.R. Wallem, Microstructure/Property Relationships of Titanium Alloys, TMS, Warrendale, PA, 1994
21.
Zurück zum Zitat G. Lütjering, J. Albrecht, and O.M. Ivasishin, Titanium ’95 Science and Technology, TMS, Warrendale, PA, 1995, p 1163–1170 G. Lütjering, J. Albrecht, and O.M. Ivasishin, Titanium ’95 Science and Technology, TMS, Warrendale, PA, 1995, p 1163–1170
22.
Zurück zum Zitat K.X. Wang, W.D. Zeng, Y.T. Shao et al., Quantification of Microstructural Features in Titanium Alloys Based on Stereology, Rare. Metal. Mater. Eng., 2009, 3, p 398–403 K.X. Wang, W.D. Zeng, Y.T. Shao et al., Quantification of Microstructural Features in Titanium Alloys Based on Stereology, Rare. Metal. Mater. Eng., 2009, 3, p 398–403
23.
Zurück zum Zitat A. Wadood, T. Inamura, Y. Yamabe-Mitarai et al., Strengthening of β Ti-6Cr-3Sn Alloy Through β Grain Refinement, α Phase Precipitation and Resulting Effects on Shape Memory Properties, Mater. Sci. Eng. A., 2013, 559, p 829–835CrossRef A. Wadood, T. Inamura, Y. Yamabe-Mitarai et al., Strengthening of β Ti-6Cr-3Sn Alloy Through β Grain Refinement, α Phase Precipitation and Resulting Effects on Shape Memory Properties, Mater. Sci. Eng. A., 2013, 559, p 829–835CrossRef
24.
Zurück zum Zitat Jun Nakahigashi and Hirofumi Yoshimura, Ultra-Fine Grain Refinement and Tensile Properties of Titanium Alloys Obtained Through Protium Treatment, J. Alloys Compd., 2002, 330–332, p 384–388CrossRef Jun Nakahigashi and Hirofumi Yoshimura, Ultra-Fine Grain Refinement and Tensile Properties of Titanium Alloys Obtained Through Protium Treatment, J. Alloys Compd., 2002, 330–332, p 384–388CrossRef
25.
Zurück zum Zitat A. Bhattacharjee, V.K. Varma, S.V. Kamat et al., Influence of β Grain Size on Tensile Behavior and Ductile Fracture Toughness of Titanium Alloy Ti-10V-2Fe-3Al, Metall. Mater. Trans. A., 2006, 37A, p 1423–1433CrossRef A. Bhattacharjee, V.K. Varma, S.V. Kamat et al., Influence of β Grain Size on Tensile Behavior and Ductile Fracture Toughness of Titanium Alloy Ti-10V-2Fe-3Al, Metall. Mater. Trans. A., 2006, 37A, p 1423–1433CrossRef
26.
Zurück zum Zitat A. Ambard, L. Guétaz, F. Louchet, and D. Guichard, Role of Interphases in the Deformation Mechanisms of an α/β Titanium Alloy at 20 K, Mater. Sci. Eng. A., 2001, 319, p 404–408CrossRef A. Ambard, L. Guétaz, F. Louchet, and D. Guichard, Role of Interphases in the Deformation Mechanisms of an α/β Titanium Alloy at 20 K, Mater. Sci. Eng. A., 2001, 319, p 404–408CrossRef
27.
Zurück zum Zitat S. Kar, T. Searles, E. Lee et al., Modeling the Tensile Properties in β-Processed α/β Ti Alloys, Metall. Mater. Trans. A., 2006, 37A, p 559–566CrossRef S. Kar, T. Searles, E. Lee et al., Modeling the Tensile Properties in β-Processed α/β Ti Alloys, Metall. Mater. Trans. A., 2006, 37A, p 559–566CrossRef
28.
Zurück zum Zitat D. Zipser and R.A. Andersen, A Back-Propagation Programmed Network that Simulates Response Properties of a Subset of Posterior Parietal Neurons, Nature, 1988, 331, p 679–684CrossRef D. Zipser and R.A. Andersen, A Back-Propagation Programmed Network that Simulates Response Properties of a Subset of Posterior Parietal Neurons, Nature, 1988, 331, p 679–684CrossRef
29.
Zurück zum Zitat B. Chen, X.R. Cheng, Y.S. Hu et al., Application of Back-Propagation Neural Network for Controlling the Front End Bending Phenomenon in Plate Rolling, Int. J. Mater. Prod. Technol., 2013, 46, p 166–176CrossRef B. Chen, X.R. Cheng, Y.S. Hu et al., Application of Back-Propagation Neural Network for Controlling the Front End Bending Phenomenon in Plate Rolling, Int. J. Mater. Prod. Technol., 2013, 46, p 166–176CrossRef
Metadaten
Titel
Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy
verfasst von
Xiaohui Shi
Weidong Zeng
Yu Sun
Yuanfei Han
Yongqing Zhao
Ping Guo
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1437-x

Weitere Artikel der Ausgabe 4/2015

Journal of Materials Engineering and Performance 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.