Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 12/2019

17.05.2019

Microwave-assisted two-steps method for the facile preparation of silver nanoparticle conductive ink

verfasst von: Chengli Tang, Shuhu Zheng, Fan Wang, Yebo Lu, Fengli Huang, Bo Xing, Chuncheng Zuo

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A microwave-assisted two-steps method was proposed for the facile and fast preparation of silver nanoparticle conductive ink. The nanoparticles in the ink are of multi-sized, which is beneficial to getting higher packing density and better conductivity of the printed/written pattern. The effects of the reaction parameters of microwave and additives on the written pattern resistivity were studied on the basis of scanning electron microscope, X-ray diffraction and surface porosity results. Both of the microwave energy and the addition of PVP as the capping agent were found to be critical for the formation of face-centered cubic silver nanoparticles in the conductive ink. The surface porosity and the pore distribution form were also demonstrated to affect the pattern conductivity. The electrical resistivity or the pattern written with the ink prepared at microwave irradiation time of 90 s was calculated to be 364 μΩ cm. The second step of simple centrifugation process could improve the pattern conductivity effectively. After concentrated the conductive ink for two times, the electrical resistivity of the written pattern reduced from 364 to 77 μΩ cm. The proposed two-steps of microwave combined with centrifugation method is a simple and useful way for the preparation of silver nanoparticle conductive ink that can be used in printed electronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Q. Lei, J.K. He, B. Zhang, J.K. Chang, D.C. Li, Microscale electrohydrodynamic printing of conductive silver features based on in situ reactive inks. J. Mater. Chem. C 6, 213–218 (2018)CrossRef Q. Lei, J.K. He, B. Zhang, J.K. Chang, D.C. Li, Microscale electrohydrodynamic printing of conductive silver features based on in situ reactive inks. J. Mater. Chem. C 6, 213–218 (2018)CrossRef
2.
Zurück zum Zitat S.Y. Chen, Y.W. Guan, Y. Li, X.W. Yan, H.T. Ni, L. Li, A water-based silver nanowire ink for large-scale flexible transparent conductive films and touch screens. J. Mater. Chem. C 5, 2404–2414 (2017)CrossRef S.Y. Chen, Y.W. Guan, Y. Li, X.W. Yan, H.T. Ni, L. Li, A water-based silver nanowire ink for large-scale flexible transparent conductive films and touch screens. J. Mater. Chem. C 5, 2404–2414 (2017)CrossRef
3.
Zurück zum Zitat R. Fischer, A. Gregori, S. Sahakalkan, D. Hartmann, P. Büchele, S.F. Tedde, O. Schmidt, Stable and highly conductive carbon nanotube enhanced PEDOT:PSS as transparent electrode for flexible electronics. Org. Electron. 62, 351–356 (2018)CrossRef R. Fischer, A. Gregori, S. Sahakalkan, D. Hartmann, P. Büchele, S.F. Tedde, O. Schmidt, Stable and highly conductive carbon nanotube enhanced PEDOT:PSS as transparent electrode for flexible electronics. Org. Electron. 62, 351–356 (2018)CrossRef
4.
Zurück zum Zitat S.E. Park, S. Kim, D.Y. Lee, E. Kim, J. Hwang, Fabrication of silver nanowire transparent electrodes using electrohydrodynamic spray deposition for flexible organic solar cells. J. Mater. Chem. A 1, 14286–14293 (2013)CrossRef S.E. Park, S. Kim, D.Y. Lee, E. Kim, J. Hwang, Fabrication of silver nanowire transparent electrodes using electrohydrodynamic spray deposition for flexible organic solar cells. J. Mater. Chem. A 1, 14286–14293 (2013)CrossRef
5.
Zurück zum Zitat J. Tolvanen, J. Hannu, H. Jantunen, Stretchable and washable strain sensor based on cracking structure for human motion monitoring. Sci. Rep. 8, 13241 (2018)CrossRef J. Tolvanen, J. Hannu, H. Jantunen, Stretchable and washable strain sensor based on cracking structure for human motion monitoring. Sci. Rep. 8, 13241 (2018)CrossRef
6.
Zurück zum Zitat G. Rosati, M. Ravarotto, M. Scaramuzza, A.D. Toni, A. Paccagnella, Silver nanoparticles inkjet-printed flexible biosensor for rapid label-free antibiotic detection in milk. Sens. Actuators, B 280, 280–289 (2019)CrossRef G. Rosati, M. Ravarotto, M. Scaramuzza, A.D. Toni, A. Paccagnella, Silver nanoparticles inkjet-printed flexible biosensor for rapid label-free antibiotic detection in milk. Sens. Actuators, B 280, 280–289 (2019)CrossRef
7.
Zurück zum Zitat B. Tian, W. Yao, P. Zeng, X. Li, H.J. Wang, L. Liu, Y. Feng, C.S. Luo, W. Wu, All-printed, low-cost, tunable sensing range strain sensors based on Ag nanodendrite conductive inks for wearable electronics. J. Mater. Chem. C 7, 809–818 (2019)CrossRef B. Tian, W. Yao, P. Zeng, X. Li, H.J. Wang, L. Liu, Y. Feng, C.S. Luo, W. Wu, All-printed, low-cost, tunable sensing range strain sensors based on Ag nanodendrite conductive inks for wearable electronics. J. Mater. Chem. C 7, 809–818 (2019)CrossRef
8.
Zurück zum Zitat Z.L. Zhang, W.Y. Zhu, Controllable synthesis and sintering of silver nanoparticles for inkjet-printed flexible electronics. J. Alloys Compd. 649, 687–693 (2015)CrossRef Z.L. Zhang, W.Y. Zhu, Controllable synthesis and sintering of silver nanoparticles for inkjet-printed flexible electronics. J. Alloys Compd. 649, 687–693 (2015)CrossRef
9.
Zurück zum Zitat W.F. Shen, X.P. Zhang, Q.J. Huang, Q.S. Xu, W.J. Song, Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6, 1622–1628 (2014)CrossRef W.F. Shen, X.P. Zhang, Q.J. Huang, Q.S. Xu, W.J. Song, Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6, 1622–1628 (2014)CrossRef
10.
Zurück zum Zitat E. Balliu, H. Andersson, M. Engholm, T. Öhlund, H.E. Nilsson, H. Olin, Selective laser sintering of inkjet printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns. Sci. Rep. 8, 10408 (2018)CrossRef E. Balliu, H. Andersson, M. Engholm, T. Öhlund, H.E. Nilsson, H. Olin, Selective laser sintering of inkjet printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns. Sci. Rep. 8, 10408 (2018)CrossRef
11.
Zurück zum Zitat N. Riaz, M. Faheem, A. Riaz, Surfactant-modified silver nanoparticle ink for high-resolution ink-jet printed narrow-gaped organic electrodes. Mater. Express 7, 113–122 (2017)CrossRef N. Riaz, M. Faheem, A. Riaz, Surfactant-modified silver nanoparticle ink for high-resolution ink-jet printed narrow-gaped organic electrodes. Mater. Express 7, 113–122 (2017)CrossRef
12.
Zurück zum Zitat J. Ding, J. Liu, Q.Y. Tian, Z.H. Wu, W.J. Yao, Z.G. Dai, L. Liu, W. Wu, Preparing of highly conductive patterns on flexible substrates by screen printing of silver nanoparticles with different size distribution. Nanoscale Res. Lett. 11, 412 (2016)CrossRef J. Ding, J. Liu, Q.Y. Tian, Z.H. Wu, W.J. Yao, Z.G. Dai, L. Liu, W. Wu, Preparing of highly conductive patterns on flexible substrates by screen printing of silver nanoparticles with different size distribution. Nanoscale Res. Lett. 11, 412 (2016)CrossRef
13.
Zurück zum Zitat W.L. Li, C.F. Li, F.P. Lang, J.T. Jiu, M. Ueshima, H. Wang, Z.Q. Liu, K. Suganuma, Self-catalyzed copper-silver complex inks for low cost fabrication of highly oxidation-resistant and conductive copper-silver hybrid tracks at a low temperature below 100 °C. Nanoscale 10, 5254–5263 (2018)CrossRef W.L. Li, C.F. Li, F.P. Lang, J.T. Jiu, M. Ueshima, H. Wang, Z.Q. Liu, K. Suganuma, Self-catalyzed copper-silver complex inks for low cost fabrication of highly oxidation-resistant and conductive copper-silver hybrid tracks at a low temperature below 100 °C. Nanoscale 10, 5254–5263 (2018)CrossRef
14.
Zurück zum Zitat T.H. Du, C.L. Tang, B. Xing, Y.B. Lu, F.L. Huang, C.C. Zuo, Ink prepared by microwave method: effect of silver content on the pattern conductivity. J. Electron. Mater. 48, 231–237 (2019)CrossRef T.H. Du, C.L. Tang, B. Xing, Y.B. Lu, F.L. Huang, C.C. Zuo, Ink prepared by microwave method: effect of silver content on the pattern conductivity. J. Electron. Mater. 48, 231–237 (2019)CrossRef
15.
Zurück zum Zitat W. Li, W. Li, M. Wang, G. Liu, M. Chen, Direct writing of stable Cu–Ag-based conductive patterns for flexible electronics. RSC Adv. 6, 10670–10676 (2016)CrossRef W. Li, W. Li, M. Wang, G. Liu, M. Chen, Direct writing of stable Cu–Ag-based conductive patterns for flexible electronics. RSC Adv. 6, 10670–10676 (2016)CrossRef
16.
Zurück zum Zitat R.M. German, Prediction of sintered density for bimodal powder mixtures. Metall. Trans. A 23, 1455–1465 (1992)CrossRef R.M. German, Prediction of sintered density for bimodal powder mixtures. Metall. Trans. A 23, 1455–1465 (1992)CrossRef
17.
Zurück zum Zitat W. Li, X. Xu, W. Li, Y. Zhao, M. Chen, Green synthesis of micron-sized silver flakes and their application in conductive ink. J. Mater. Sci. 53, 6424–6432 (2018)CrossRef W. Li, X. Xu, W. Li, Y. Zhao, M. Chen, Green synthesis of micron-sized silver flakes and their application in conductive ink. J. Mater. Sci. 53, 6424–6432 (2018)CrossRef
18.
Zurück zum Zitat C.L. Tang, B. Xing, G.S. Hu, F.L. Huang, C.C. Zuo, A facile microwave approach to the fast-and-direct production of silver nano-ink. Mater. Lett. 188, 220–223 (2017)CrossRef C.L. Tang, B. Xing, G.S. Hu, F.L. Huang, C.C. Zuo, A facile microwave approach to the fast-and-direct production of silver nano-ink. Mater. Lett. 188, 220–223 (2017)CrossRef
19.
Zurück zum Zitat M.A.M. Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, M.S. Alsalhi, Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res. Lett. 6, 434 (2011)CrossRef M.A.M. Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, M.S. Alsalhi, Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res. Lett. 6, 434 (2011)CrossRef
20.
Zurück zum Zitat S. Duhan, B.S. Dehiya, V. Tomer, Microstructure and photocatalytic dye degradation of silver-silica nano composites synthesised by sol-gel method. Adv. Mat. Lett. 4, 317–322 (2013)CrossRef S. Duhan, B.S. Dehiya, V. Tomer, Microstructure and photocatalytic dye degradation of silver-silica nano composites synthesised by sol-gel method. Adv. Mat. Lett. 4, 317–322 (2013)CrossRef
21.
Zurück zum Zitat D. Chen, X. Qiao, X. Qiu, J. Chen, Synthesis and electrical properties of uniform silver nanoparticles for electronic application. J. Mater. Sci. 44, 1076–1081 (2009)CrossRef D. Chen, X. Qiao, X. Qiu, J. Chen, Synthesis and electrical properties of uniform silver nanoparticles for electronic application. J. Mater. Sci. 44, 1076–1081 (2009)CrossRef
22.
Zurück zum Zitat A. Mekki, N. Joshi, A. Singh, Z. Salmi, P. Jha, P. Decorse, S. Lau, R. Mahmoud, M.M. Chehimi, D.K. Aswal, S.K. Gupta, H2S sensing using in situ photo-polymerized polyaniline-silver nanocomposite films on flexible substrates. Org. Electron. 15, 71–81 (2014)CrossRef A. Mekki, N. Joshi, A. Singh, Z. Salmi, P. Jha, P. Decorse, S. Lau, R. Mahmoud, M.M. Chehimi, D.K. Aswal, S.K. Gupta, H2S sensing using in situ photo-polymerized polyaniline-silver nanocomposite films on flexible substrates. Org. Electron. 15, 71–81 (2014)CrossRef
23.
Zurück zum Zitat Y. Junejo, A. Baykal, J. Sirajuddin, Green chemical synthesis of silver nanoparticles and its catalytic activity. Inorg. Organomet. Polym. 24, 722–728 (2014)CrossRef Y. Junejo, A. Baykal, J. Sirajuddin, Green chemical synthesis of silver nanoparticles and its catalytic activity. Inorg. Organomet. Polym. 24, 722–728 (2014)CrossRef
24.
Zurück zum Zitat S. Singh, A. Bharti, V.K. Meena, Structural, thermal, zeta potential and electrical properties of disaccharide reduced silver nanoparticles. J. Mater. Sci.: Mater. Electron. 25, 3747–3752 (2014) S. Singh, A. Bharti, V.K. Meena, Structural, thermal, zeta potential and electrical properties of disaccharide reduced silver nanoparticles. J. Mater. Sci.: Mater. Electron. 25, 3747–3752 (2014)
25.
Zurück zum Zitat N. Agasti, N.K. Kaushik, One pot synthesis of crystalline silver nanoparticles. J. Nanomater. 2, 4–7 (2014) N. Agasti, N.K. Kaushik, One pot synthesis of crystalline silver nanoparticles. J. Nanomater. 2, 4–7 (2014)
26.
Zurück zum Zitat R. Patakfalvi, Z. Viranyi, I. Dekany, Kinetics of silver nanoparticle growth in aqueous polymer solutions. Colloid Polym. Sci. 283, 299–305 (2004)CrossRef R. Patakfalvi, Z. Viranyi, I. Dekany, Kinetics of silver nanoparticle growth in aqueous polymer solutions. Colloid Polym. Sci. 283, 299–305 (2004)CrossRef
27.
Zurück zum Zitat M. Kim, J. Byun, D. Shin, Y.S. Lee, Spontaneous formation of silver nanoparticles on polymeric supports. Mater. Res. Bull. 44, 334–338 (2009)CrossRef M. Kim, J. Byun, D. Shin, Y.S. Lee, Spontaneous formation of silver nanoparticles on polymeric supports. Mater. Res. Bull. 44, 334–338 (2009)CrossRef
28.
Zurück zum Zitat K. Manish, P. Devi, A. Kumar, Structural analysis of PVP capped silver nanoparticles synthesized at room temperature for optical, electrical and gas sensing properties. J. Mater. Sci.: Mater. Electron. 28, 5014–5020 (2017) K. Manish, P. Devi, A. Kumar, Structural analysis of PVP capped silver nanoparticles synthesized at room temperature for optical, electrical and gas sensing properties. J. Mater. Sci.: Mater. Electron. 28, 5014–5020 (2017)
29.
Zurück zum Zitat J.N. Zheng, J.J. Lv, S.S. Li, M.W. Xue, A.J. Wang, J.J. Feng, One-pot synthesis of reduced graphene oxide supported hollow Ag@ Pt core–shell nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation. J. Mater. Chem. A 2, 3445–3451 (2014)CrossRef J.N. Zheng, J.J. Lv, S.S. Li, M.W. Xue, A.J. Wang, J.J. Feng, One-pot synthesis of reduced graphene oxide supported hollow Ag@ Pt core–shell nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation. J. Mater. Chem. A 2, 3445–3451 (2014)CrossRef
30.
Zurück zum Zitat Y. Liu, Y. Zhang, G.H. Ma, Z. Wang, K.Y. Liu, H.T. Liu, Ethylene glycol reduced graphene oxide/polypyrrole composite for super capacitor. Electrochim. Acta 88, 519–525 (2013)CrossRef Y. Liu, Y. Zhang, G.H. Ma, Z. Wang, K.Y. Liu, H.T. Liu, Ethylene glycol reduced graphene oxide/polypyrrole composite for super capacitor. Electrochim. Acta 88, 519–525 (2013)CrossRef
31.
Zurück zum Zitat S.E. Skrabalak, B.J. Wiley, M. Kim, E.V. Formo, Y.N. Xia, On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett. 8, 2077–2081 (2008)CrossRef S.E. Skrabalak, B.J. Wiley, M. Kim, E.V. Formo, Y.N. Xia, On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett. 8, 2077–2081 (2008)CrossRef
32.
Zurück zum Zitat P.A. Buffat, Lowering of the melting temperature of small gold crystals between 150 Å and 25 Å diameter. Thin Solid Films 32, 283–286 (1976)CrossRef P.A. Buffat, Lowering of the melting temperature of small gold crystals between 150 Å and 25 Å diameter. Thin Solid Films 32, 283–286 (1976)CrossRef
Metadaten
Titel
Microwave-assisted two-steps method for the facile preparation of silver nanoparticle conductive ink
verfasst von
Chengli Tang
Shuhu Zheng
Fan Wang
Yebo Lu
Fengli Huang
Bo Xing
Chuncheng Zuo
Publikationsdatum
17.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 12/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01516-5

Weitere Artikel der Ausgabe 12/2019

Journal of Materials Science: Materials in Electronics 12/2019 Zur Ausgabe

Neuer Inhalt