Skip to main content

2015 | OriginalPaper | Buchkapitel

9. Microwave Pyrolysis Process Potential of Waste Jatropha Curcas Seed Cake

verfasst von : Ricardo A. Narváez C., Valeria Ramírez, Diego Chulde, Sebastián Espinoza, Jesús López-Villada

Erschienen in: Renewable Energy in the Service of Mankind Vol I

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter aims to express the potential of waste Jatropha curcas seed cake (JCSC) as an interesting option for energy generation. The results obtained by microwave pyrolysis (MWP) process, undoubtedly, indicate that the remaining organic liquid substances contained in JCSC, the solid residue obtained from the process, and the gaseous fraction are still a potential energy source that can be explored. The exploitation is particularly interesting in cases where an extensive production of this type of biomass waste exists and its transportation implies extensive paths and additional costs.
Jatropha Curcas for Galapagos Islands” project is a current initiative aimed to reduce the requirements of fossil fuels for Galapagos Islands, which is framed under the “Zero fossil fuels for Galapagos Islands” national objective. The project is focused on gathering J. curcas fruit from living fences along the rural areas of the Province Manabí (Ecuador) to extract oil in small-scale facilities. The extracted oil is refined and transported to Galapagos Islands where it is used as biofuel for internal combustion engine generators to provide electricity to the islands. Although the by-products of extraction are currently not being exploited as an energy source, this possibility is seen as a remarkable choice for final disposition and energy generation improvement. In 2012, especially in this particular case, seed cake production was estimated to be 213 t/year as a result of its exponential growth since 2009.
Conventional pyrolysis presents some inconvenient situations, such as resistance to heat transfer, heat loss, and lack of fast heating. Taking into account that short operation/retention times are preferred in cases with growing demand, and low energy-intensive extraction technologies maximize the energy output of the primary energy source, MWP appears as a suitable option to be applied.
The available JCSC was assayed in a bench-scale MWP batch process that allows tar and chars formation and their separation for analysis. During the process, MWP operating conditions were programmed to reach 550 °C in 30 min from room temperature and maintain this condition for an additional 10 min. Also, JCSC was previously assayed to establish the content of volatile organic compounds with the purpose of estimating the organic liquid substances yield in case of a potential extraction. Liquid products (bio-oil) were analyzed through gas chromatography coupled with a mass-spectrometer detector (GC-MS) in order to determine the most representative compounds in a qualitative-basis. Their functional groups profile was obtained through a Fourier-Transform Infrared Spectroscopy (FTIR) assay. Bulk properties, such as density and calorific value, were obtained by applying existing standard methods suitable for diesel fuel. Analysis results were used to estimate its behavior as a liquid fuel by comparing the results with diesel-fuel quality standards and characteristics. In addition, calorific value, proximal and ultimate biomass analyses were developed for solid products in order to assess the suitability of a potential use as solid fuel.
The results show that the maximum content of potential liquid fuel substances is around 75 %, which leads to a conclusion that liquid fuel extraction by thermal methods is a suitable option to be evaluated regarding an augmentation of liquid fuel yield.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Demirbas A (2001) Conversion of biomass to a pyrolytic oil for blending gasoline as an alternative fuel in internal combustion engines. Energy Sour 23(6):553–562MathSciNetCrossRef Demirbas A (2001) Conversion of biomass to a pyrolytic oil for blending gasoline as an alternative fuel in internal combustion engines. Energy Sour 23(6):553–562MathSciNetCrossRef
2.
Zurück zum Zitat Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2):590–598CrossRef Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2):590–598CrossRef
3.
Zurück zum Zitat Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright M, et al (2010) Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89:S29–S35CrossRef Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright M, et al (2010) Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89:S29–S35CrossRef
4.
Zurück zum Zitat Fan J, Kalnes TN, Alward M, Klinger J, Sadehvandi A, Shonnard DR (2011) Life cycle assessment of electricity generation using fast pyrolysis bio-oil. Renew Energy 36(2):632–641CrossRef Fan J, Kalnes TN, Alward M, Klinger J, Sadehvandi A, Shonnard DR (2011) Life cycle assessment of electricity generation using fast pyrolysis bio-oil. Renew Energy 36(2):632–641CrossRef
5.
Zurück zum Zitat Proyecto: “Biocombustibles Galápagos—Sustitución de Combustibles Fósiles por Biocombustibles en la Generación Eléctrica en las Islas Galápagos con aceite de Piñón (Jatropha curcas) procedente de la Provincia de Manabí”—INFORME FINAL: MAYO 6/2011-NOVIEMBRE 6/2012 (2012), Ministry of Electricity and Renewable Energy of Ecuador Proyecto: “Biocombustibles Galápagos—Sustitución de Combustibles Fósiles por Biocombustibles en la Generación Eléctrica en las Islas Galápagos con aceite de Piñón (Jatropha curcas) procedente de la Provincia de Manabí”—INFORME FINAL: MAYO 6/2011-NOVIEMBRE 6/2012 (2012), Ministry of Electricity and Renewable Energy of Ecuador
6.
Zurück zum Zitat Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889CrossRef Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889CrossRef
7.
Zurück zum Zitat Ng KS, Sadhukhan J (2011) Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power. Biomass Bioenergy 35(3):1153–1169CrossRef Ng KS, Sadhukhan J (2011) Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power. Biomass Bioenergy 35(3):1153–1169CrossRef
8.
Zurück zum Zitat Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 19(1):1–15CrossRef Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 19(1):1–15CrossRef
9.
Zurück zum Zitat Gerçel HF (2002) The production and evaluation of bio-oils from the pyrolysis of sunflower-oil cake. Biomass Bioenergy 23(4):307–314CrossRef Gerçel HF (2002) The production and evaluation of bio-oils from the pyrolysis of sunflower-oil cake. Biomass Bioenergy 23(4):307–314CrossRef
10.
Zurück zum Zitat Yorgun S, Şensöz S, Koçkar ÖM (2001) Flash pyrolysis of sunflower oil cake for production of liquid fuels. J Anal Appl Pyrolysis 60(1):1–12CrossRef Yorgun S, Şensöz S, Koçkar ÖM (2001) Flash pyrolysis of sunflower oil cake for production of liquid fuels. J Anal Appl Pyrolysis 60(1):1–12CrossRef
11.
Zurück zum Zitat Ucar S, Ozkan AR (2008) Characterization of products from the pyrolysis of rapeseed oil cake. Bioresour Technol 99(18):8771–8776CrossRef Ucar S, Ozkan AR (2008) Characterization of products from the pyrolysis of rapeseed oil cake. Bioresour Technol 99(18):8771–8776CrossRef
12.
Zurück zum Zitat Özçimen D, Karaosmanoğlu F (2004) Production and characterization of bio-oil and biochar from rapeseed cake. Renew Energy 29(5):779–787CrossRef Özçimen D, Karaosmanoğlu F (2004) Production and characterization of bio-oil and biochar from rapeseed cake. Renew Energy 29(5):779–787CrossRef
13.
Zurück zum Zitat Volli V, Singh RK (2012) Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel 96:579–585CrossRef Volli V, Singh RK (2012) Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel 96:579–585CrossRef
14.
Zurück zum Zitat Butler E, Devlin G, Meier D, McDonnell K (2011) A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renew Sustain Energy Rev 15(8):4171–4186CrossRef Butler E, Devlin G, Meier D, McDonnell K (2011) A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renew Sustain Energy Rev 15(8):4171–4186CrossRef
15.
Zurück zum Zitat Standard NTE INEN 1983:02– Productos derivados del petróleo. Fuel Oil. Requisitos (2012), National Institute of Normalization of Ecuador (INEN) Standard NTE INEN 1983:02– Productos derivados del petróleo. Fuel Oil. Requisitos (2012), National Institute of Normalization of Ecuador (INEN)
16.
Zurück zum Zitat Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33(3):233–271CrossRef Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33(3):233–271CrossRef
17.
Zurück zum Zitat Wang S, Gu Y, Liu Q, Yao Y, Guo Z, Luo Z, Cen K (2009) Separation of bio-oil by molecular distillation. Fuel Process Technol 90(5):738–745CrossRef Wang S, Gu Y, Liu Q, Yao Y, Guo Z, Luo Z, Cen K (2009) Separation of bio-oil by molecular distillation. Fuel Process Technol 90(5):738–745CrossRef
18.
Zurück zum Zitat Guo X, Wang S, Guo Z, Liu Q, Luo Z, Cen K (2010) Pyrolysis characteristics of bio-oil fractions separated by molecular distillation. Appl Energy 87(9):2892–2898CrossRef Guo X, Wang S, Guo Z, Liu Q, Luo Z, Cen K (2010) Pyrolysis characteristics of bio-oil fractions separated by molecular distillation. Appl Energy 87(9):2892–2898CrossRef
19.
Zurück zum Zitat Junming X, Jianchun J, Yunjuan S, Yanju L (2008) Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics. Biomass Bioenergy 32(11):1056–1061CrossRef Junming X, Jianchun J, Yunjuan S, Yanju L (2008) Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics. Biomass Bioenergy 32(11):1056–1061CrossRef
20.
Zurück zum Zitat Standard NTE INEN 1489–7:2012–Productos derivados del petróleo. Diesel. Requisitos (2011), National Institute of Normalization of Ecuador (INEN) Standard NTE INEN 1489–7:2012–Productos derivados del petróleo. Diesel. Requisitos (2011), National Institute of Normalization of Ecuador (INEN)
21.
Zurück zum Zitat Mann MK, Spath PL, Kadam K (1996, June) Technical and economic analysis of renewables-based hydrogen production. In Proceedings of the 11th World Hydrogen Energy Conference, Stuttgart, Germany (pp 23–28) Mann MK, Spath PL, Kadam K (1996, June) Technical and economic analysis of renewables-based hydrogen production. In Proceedings of the 11th World Hydrogen Energy Conference, Stuttgart, Germany (pp 23–28)
22.
Zurück zum Zitat Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Organ Geochem 30(12):1479–1493CrossRef Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Organ Geochem 30(12):1479–1493CrossRef
23.
Zurück zum Zitat Radlein D, Piskorz J, Majerski P (1997) Method of producing slow-release nitrogenous organic fertilizer from biomass. US Patent 5,676, 727, 1997 and European Patent Application 0716056 Radlein D, Piskorz J, Majerski P (1997) Method of producing slow-release nitrogenous organic fertilizer from biomass. US Patent 5,676, 727, 1997 and European Patent Application 0716056
24.
Zurück zum Zitat UOP Standard UOP77–85, “Crude Oil Evaluation by Hempel Distillation” (1985) ASTM International, West Conshohocken. www.astm.org UOP Standard UOP77–85, “Crude Oil Evaluation by Hempel Distillation” (1985) ASTM International, West Conshohocken. www.​astm.​org
Metadaten
Titel
Microwave Pyrolysis Process Potential of Waste Jatropha Curcas Seed Cake
verfasst von
Ricardo A. Narváez C.
Valeria Ramírez
Diego Chulde
Sebastián Espinoza
Jesús López-Villada
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-17777-9_9