Skip to main content

2020 | OriginalPaper | Buchkapitel

8. Mikrobielle Verfahren zur Umsetzung von CO2 und CO

verfasst von : Dirk Weuster-Botz, Frank Kensy, Heleen De Wever, Linsey Garcia-Gonzalez

Erschienen in: CO2 und CO – Nachhaltige Kohlenstoffquellen für die Kreislaufwirtschaft

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Kohlenstoffdioxid (CO2) muss reduziert werden, um daraus Biomasse (Biokatalysatoren) und organische Moleküle herstellen zu können. Mikroorganismen verfügen über eine ganze Reihe von Möglichkeiten zur Bereitstellung von Elektronen zur CO2-Reduktion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Schlegel HG, Gottschalk G, von Bartha R (1961) Formation and utilization of poly-[beta]-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463–465 Schlegel HG, Gottschalk G, von Bartha R (1961) Formation and utilization of poly-[beta]-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463–465
3.
Zurück zum Zitat Yu J (2018) Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World J Microbiol Biotechnol 34:89 Yu J (2018) Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World J Microbiol Biotechnol 34:89
4.
Zurück zum Zitat Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1(2):e00103-10 Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1(2):e00103-10
6.
Zurück zum Zitat Chmiel H, Weuster-Botz D (2018) Bioreaktoren. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 157–229 Chmiel H, Weuster-Botz D (2018) Bioreaktoren. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 157–229
7.
Zurück zum Zitat Vega JL, Holmberg VL, Clausen EC, Gaddy JL (1988) Fermentation parameters of Peptostreptococcus productus on gaseous substrates (CO, H2/CO2). Arch Microbiol 151:65–70 Vega JL, Holmberg VL, Clausen EC, Gaddy JL (1988) Fermentation parameters of Peptostreptococcus productus on gaseous substrates (CO, H2/CO2). Arch Microbiol 151:65–70
8.
Zurück zum Zitat Chang I-S, Kim D-H, Kim B-H, Shin P-K, Sung H-C, Lovitt RW (1998) CO fermentation of Eubacterium limosum KIST612. J Microbiol Biotechnol 8:134–140 Chang I-S, Kim D-H, Kim B-H, Shin P-K, Sung H-C, Lovitt RW (1998) CO fermentation of Eubacterium limosum KIST612. J Microbiol Biotechnol 8:134–140
9.
Zurück zum Zitat Skidmore BE, Baker RA, Banjade DR, Bray JM, Tree DR, Lewis RS (2013) Syngas fermentation to biofuels: effects of hydrogen partial pressure on hydrogenase efficiency. Biomass Bioenergy 55:162–165 Skidmore BE, Baker RA, Banjade DR, Bray JM, Tree DR, Lewis RS (2013) Syngas fermentation to biofuels: effects of hydrogen partial pressure on hydrogenase efficiency. Biomass Bioenergy 55:162–165
10.
Zurück zum Zitat Mohammadi M, Mohamed AR, Najafpour GD, Younesi H, Uzir MH (2014) Kinetic studies on fermentative production of biofuel from synthesis gas using Clostridium ljungdahlii. Sci World J 2014:910590 Mohammadi M, Mohamed AR, Najafpour GD, Younesi H, Uzir MH (2014) Kinetic studies on fermentative production of biofuel from synthesis gas using Clostridium ljungdahlii. Sci World J 2014:910590
11.
Zurück zum Zitat Mayer A, Schädler T, Trunz S, Stelzer T, Weuster-Botz D (2018) Carbon monoxide conversion with Clostridium aceticum. Biotechnol Bioeng 115(11):2740–2750 Mayer A, Schädler T, Trunz S, Stelzer T, Weuster-Botz D (2018) Carbon monoxide conversion with Clostridium aceticum. Biotechnol Bioeng 115(11):2740–2750
12.
Zurück zum Zitat Doll (2018) Reaktionstechnische Untersuchungen zur autotrophen Herstellung von Alkoholen mit Clostridium carboxidivorans. Dissertation, TU München Doll (2018) Reaktionstechnische Untersuchungen zur autotrophen Herstellung von Alkoholen mit Clostridium carboxidivorans. Dissertation, TU München
13.
Zurück zum Zitat Takors R, WeusterBotz D (2018) Prozessmodelle. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 71–105 Takors R, WeusterBotz D (2018) Prozessmodelle. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 71–105
15.
Zurück zum Zitat Demler M, Weuster-Botz D (2011) Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii. Biotechnol Bioeng 108:470–474 Demler M, Weuster-Botz D (2011) Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii. Biotechnol Bioeng 108:470–474
16.
Zurück zum Zitat Groher A, Weuster-Botz D (2016) Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation. J Biotechnol 228:82–94 Groher A, Weuster-Botz D (2016) Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation. J Biotechnol 228:82–94
17.
Zurück zum Zitat Groher A, Weuster-Botz D (2016) General medium for the autotrophic cultivation of acetogens. Bioproc Biosys Eng 39:1645–1650 Groher A, Weuster-Botz D (2016) General medium for the autotrophic cultivation of acetogens. Bioproc Biosys Eng 39:1645–1650
18.
Zurück zum Zitat Kantzow C, Weuster-Botz D (2016) Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii. Bioproc Biosys Eng 39:1325–1330 Kantzow C, Weuster-Botz D (2016) Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii. Bioproc Biosys Eng 39:1325–1330
20.
Zurück zum Zitat Mohammadi M, Younesi H, Najafpour G, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87:837–843 Mohammadi M, Younesi H, Najafpour G, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87:837–843
21.
Zurück zum Zitat Denecke M, Steuernagel L (2018) Mikrobielle Abwasserreinigung. In: Takors R, Weuster-Botz D (Hrsg) Chmiel H. Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 478–488 Denecke M, Steuernagel L (2018) Mikrobielle Abwasserreinigung. In: Takors R, Weuster-Botz D (Hrsg) Chmiel H. Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 478–488
22.
Zurück zum Zitat Kantzow C, Mayer A, Weuster-Botz D (2015) Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention. J Biotechnol 212:11–18 Kantzow C, Mayer A, Weuster-Botz D (2015) Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention. J Biotechnol 212:11–18
23.
Zurück zum Zitat Richter H, Martin ME, Angenent LT (2013) A two-stage continuous fermentation system for conversion of syngas into ethanol. Energies 6:3987–4000 Richter H, Martin ME, Angenent LT (2013) A two-stage continuous fermentation system for conversion of syngas into ethanol. Energies 6:3987–4000
24.
Zurück zum Zitat Martin ME, Richter H, Saha S, Angenent LT (2015) Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnol Bioeng 113:531–539 Martin ME, Richter H, Saha S, Angenent LT (2015) Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnol Bioeng 113:531–539
25.
Zurück zum Zitat Doll K, Rückel A, Kämpf P, Weuster-Botz D (2018) Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioproc Biosys Eng 41:1403–1416 Doll K, Rückel A, Kämpf P, Weuster-Botz D (2018) Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioproc Biosys Eng 41:1403–1416
26.
Zurück zum Zitat Heijstra BD, Leang C, Juminaga A (2017) Gas fermentation: cellular engineering possibilities and scale-up. Microb Cell Fact 16:60 Heijstra BD, Leang C, Juminaga A (2017) Gas fermentation: cellular engineering possibilities and scale-up. Microb Cell Fact 16:60
27.
Zurück zum Zitat Molitor B, Richter H, Martin ME, Jensen RO, Juminaga A, Mihalcea C, Angenent LT (2017) Carbon recovery by fermentation of CO-rich off gases – turning steel mills into biorefineries. Biores Technol 2015:386–396 Molitor B, Richter H, Martin ME, Jensen RO, Juminaga A, Mihalcea C, Angenent LT (2017) Carbon recovery by fermentation of CO-rich off gases – turning steel mills into biorefineries. Biores Technol 2015:386–396
28.
Zurück zum Zitat Takors R, Kopf M, Mampel J, Bluemke W, Blombach B, Eikmanns B, Bengelsdorf F, Weuster-Botz D, Dürre P (2018) Using gas mixtures of CO, CO2, and H2 as microbial substrates: the dos and don’ts of successful technology transfer from lab to production scale. Microb Biotechnol 11:606–625 Takors R, Kopf M, Mampel J, Bluemke W, Blombach B, Eikmanns B, Bengelsdorf F, Weuster-Botz D, Dürre P (2018) Using gas mixtures of CO, CO2, and H2 as microbial substrates: the dos and don’ts of successful technology transfer from lab to production scale. Microb Biotechnol 11:606–625
29.
Zurück zum Zitat Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis gas fermentations. Biotechnol Prog 15:834–844 Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis gas fermentations. Biotechnol Prog 15:834–844
30.
Zurück zum Zitat Yasin M, Jeong Y, Park SJ, Jeong J, Lee EY, Lowitt RW, Kim BH, Lee J, Chang IS (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Biores Technol 177:361–374 Yasin M, Jeong Y, Park SJ, Jeong J, Lee EY, Lowitt RW, Kim BH, Lee J, Chang IS (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Biores Technol 177:361–374
31.
Zurück zum Zitat Devarapalli M, Atiyeh HK, Phillips JR, Lewis RS, Huhnke RL (2016) Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using C. ragsdalei. Biores Technol 209:56–65 Devarapalli M, Atiyeh HK, Phillips JR, Lewis RS, Huhnke RL (2016) Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using C. ragsdalei. Biores Technol 209:56–65
32.
Zurück zum Zitat Shen Y, Brauwn RC, Wen Z (2017) Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl Energy 187:585–594 Shen Y, Brauwn RC, Wen Z (2017) Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl Energy 187:585–594
33.
Zurück zum Zitat Xu D, Tree DR, Lewis RS (2011) The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy 35:2690–2696 Xu D, Tree DR, Lewis RS (2011) The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy 35:2690–2696
35.
Zurück zum Zitat Molitor B, Richter H, Martin ME, Jensen RO, Juminaga A, Mihalcea C, Angenent LT (2016) Carbon recovery by fermentation of CO-rich off gases – turning steel mills into biorefineries. Biores Technol 215:386–396 Molitor B, Richter H, Martin ME, Jensen RO, Juminaga A, Mihalcea C, Angenent LT (2016) Carbon recovery by fermentation of CO-rich off gases – turning steel mills into biorefineries. Biores Technol 215:386–396
36.
Zurück zum Zitat Klassen KT, Ackerson CMD, Clausen EC, Gaddy JL (1993) Biological conversion of coal and coal-derived synthesis gas. Fuel 72:1673–1678 Klassen KT, Ackerson CMD, Clausen EC, Gaddy JL (1993) Biological conversion of coal and coal-derived synthesis gas. Fuel 72:1673–1678
37.
Zurück zum Zitat Phillips JR, Atiyeh HK, Huhnke RL (2014) Method for design of production medium for fermentation of synthesis gas to ethanol by acetogenic bacteria. Biological Eng Trans 7(3):113–128 Phillips JR, Atiyeh HK, Huhnke RL (2014) Method for design of production medium for fermentation of synthesis gas to ethanol by acetogenic bacteria. Biological Eng Trans 7(3):113–128
38.
Zurück zum Zitat Ahmed A, Lewis R (2007) Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 97:1080–1086 Ahmed A, Lewis R (2007) Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 97:1080–1086
39.
Zurück zum Zitat Voegele E (2018) Former Ineos Bio site purchased for conversion into eco-district. Biomass Magazine 15089 Voegele E (2018) Former Ineos Bio site purchased for conversion into eco-district. Biomass Magazine 15089
40.
Zurück zum Zitat Vuppaladadiyam AK, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davos RW, Abbas A, Ralph P, Fennell PS, Zhao M (2018) Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. Chemsuschem 11:334–355 Vuppaladadiyam AK, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davos RW, Abbas A, Ralph P, Fennell PS, Zhao M (2018) Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. Chemsuschem 11:334–355
41.
Zurück zum Zitat Posten C (2018) Fotobioreaktoren. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 188–196 Posten C (2018) Fotobioreaktoren. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 188–196
42.
Zurück zum Zitat Grobbelaar JU (2009) From laboratory to commercial production: a case study of a Spirulina (Arthrospira) facility in Musina, South Africa. J Appl Phycol 21:523–527 Grobbelaar JU (2009) From laboratory to commercial production: a case study of a Spirulina (Arthrospira) facility in Musina, South Africa. J Appl Phycol 21:523–527
43.
Zurück zum Zitat Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6:5869–5886 Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6:5869–5886
44.
Zurück zum Zitat Apel AC, Pfaffinger CE, Basedahl N, Mittwollen N, Göbel J, Sauter J, Brück T, Weuster-Botz D (2017) Open thin-layer cascade reactors for saline microalgae production evaluated in a physically simulated Mediterranean summer climate. Algal Res 25:381–390 Apel AC, Pfaffinger CE, Basedahl N, Mittwollen N, Göbel J, Sauter J, Brück T, Weuster-Botz D (2017) Open thin-layer cascade reactors for saline microalgae production evaluated in a physically simulated Mediterranean summer climate. Algal Res 25:381–390
45.
Zurück zum Zitat Severin TS, Apel A, Brück T, Weuster-Botz D (2018) Investigation of vertical mixing in open thin-layer cascade reactors using Computational Fluid Dynamics. Chem Eng Res Des 132:436–444 Severin TS, Apel A, Brück T, Weuster-Botz D (2018) Investigation of vertical mixing in open thin-layer cascade reactors using Computational Fluid Dynamics. Chem Eng Res Des 132:436–444
46.
Zurück zum Zitat Apel A, Weuster-Botz D (2015) Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioproc Biosys Eng 38:995–1008 Apel A, Weuster-Botz D (2015) Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioproc Biosys Eng 38:995–1008
47.
Zurück zum Zitat Pfaffinger CE, Schöne D, Trunz S, Löwe H, Weuster-Botz D (2016) Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. Algae Res 20:153–163 Pfaffinger CE, Schöne D, Trunz S, Löwe H, Weuster-Botz D (2016) Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. Algae Res 20:153–163
48.
Zurück zum Zitat Koller A, Löwe H, Schmid V, Mundt S, Weuster-Botz D (2017) Model-supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat-plate photobioreactor. Biotechnol Bioeng 114:308–320 Koller A, Löwe H, Schmid V, Mundt S, Weuster-Botz D (2017) Model-supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat-plate photobioreactor. Biotechnol Bioeng 114:308–320
49.
Zurück zum Zitat Koller A, Wolf L, Brück T, Weuster-Botz D (2018) Studies on the scale-up of biomass production with Scenedesmus sp. in flat-plate gas-lift photobioreactors. Bioproc Biosys Eng 41:213–220 Koller A, Wolf L, Brück T, Weuster-Botz D (2018) Studies on the scale-up of biomass production with Scenedesmus sp. in flat-plate gas-lift photobioreactors. Bioproc Biosys Eng 41:213–220
50.
Zurück zum Zitat Koller A, Wolf L, Weuster-Botz D (2017) Reaction engineering analysis of Scenedesmus ovalternus in a flat-plate gas-lift photobioreactor. Biores Technol 225:165–174 Koller A, Wolf L, Weuster-Botz D (2017) Reaction engineering analysis of Scenedesmus ovalternus in a flat-plate gas-lift photobioreactor. Biores Technol 225:165–174
51.
Zurück zum Zitat Pfaffinger CE (2017) Reaktionstechnische Untersuchungen zur Lipidherstellung mit Nannochloropsis sp. in verschiedenen Photobioreaktoren. Dissertation, TU München Pfaffinger CE (2017) Reaktionstechnische Untersuchungen zur Lipidherstellung mit Nannochloropsis sp. in verschiedenen Photobioreaktoren. Dissertation, TU München
52.
Zurück zum Zitat King GM (2001) Aspects of carbon monoxide production and oxidation by marine macroalgae. Mar Ecol Prog Ser 224:69–75 King GM (2001) Aspects of carbon monoxide production and oxidation by marine macroalgae. Mar Ecol Prog Ser 224:69–75
53.
Zurück zum Zitat Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sus Energ Rev 14:557–577 Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sus Energ Rev 14:557–577
54.
Zurück zum Zitat Schirmer A, Rude MA, Li X, Popova E, Del Cardayre SB (2010) Microbial Biosynthesis of alkanes. Science 329(8991):559–562 Schirmer A, Rude MA, Li X, Popova E, Del Cardayre SB (2010) Microbial Biosynthesis of alkanes. Science 329(8991):559–562
56.
Zurück zum Zitat Weizmann C (1919) Improvements in the bacterial fermentation of carbohydrates and in bacterial cultures for the same. Patent, GB191504845 Weizmann C (1919) Improvements in the bacterial fermentation of carbohydrates and in bacterial cultures for the same. Patent, GB191504845
57.
Zurück zum Zitat Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586(15):2191–2198 Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586(15):2191–2198
61.
Zurück zum Zitat Schuchmann K, Müller V (2013) Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342(6164):1382–1385 Schuchmann K, Müller V (2013) Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342(6164):1382–1385
62.
Zurück zum Zitat Andreesen JR, Gottschalk G, Schlegel HG (1970) Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Microbiol 72:154–174 Andreesen JR, Gottschalk G, Schlegel HG (1970) Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Microbiol 72:154–174
63.
Zurück zum Zitat Mechichi T, Labat M, Patel BKC, Woo THS, Thomas P, Garcia J-L (1999) Clostridium methoxybenzovorans sp. nov., a new aromatic o-demethylating homoacetogen from an olive mill wastewater treatment digester. Int J Syst Bacteriol 49:1201–1209 Mechichi T, Labat M, Patel BKC, Woo THS, Thomas P, Garcia J-L (1999) Clostridium methoxybenzovorans sp. nov., a new aromatic o-demethylating homoacetogen from an olive mill wastewater treatment digester. Int J Syst Bacteriol 49:1201–1209
64.
Zurück zum Zitat Mechichi T, Labat M, Woo THS, Thomas P, Garcia J-L, Patel BKC (1998) Eubacterium aggregans sp. nov., a new homoacetogenic bacterium from olive mill wastewater treatment digestor. Anaerobe 4:283–291 Mechichi T, Labat M, Woo THS, Thomas P, Garcia J-L, Patel BKC (1998) Eubacterium aggregans sp. nov., a new homoacetogenic bacterium from olive mill wastewater treatment digestor. Anaerobe 4:283–291
65.
Zurück zum Zitat Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing anaerobic bacteria. Int J Syst Bacteriol 27:355–361 Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing anaerobic bacteria. Int J Syst Bacteriol 27:355–361
66.
Zurück zum Zitat Straub M, Demler M, Weuster-Botz D, Dürre P (2014) Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. J Biotechnol 178:67–72 Straub M, Demler M, Weuster-Botz D, Dürre P (2014) Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. J Biotechnol 178:67–72
67.
Zurück zum Zitat Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351 Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351
68.
Zurück zum Zitat Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43:232–236 Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43:232–236
69.
Zurück zum Zitat Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107:13087–13092 Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107:13087–13092
70.
Zurück zum Zitat Weghoff MC, Bertsch J, Müller V (2015) A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 17(3):670–677 Weghoff MC, Bertsch J, Müller V (2015) A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 17(3):670–677
71.
Zurück zum Zitat Huhnke RL, Lewis RS, Tanner RS (2008) Isolation and characterization of novel clostridial species, Patent, WO2008028055 A2. The Board of Regents for Oklahoma State University, Anmelder Huhnke RL, Lewis RS, Tanner RS (2008) Isolation and characterization of novel clostridial species, Patent, WO2008028055 A2. The Board of Regents for Oklahoma State University, Anmelder
72.
Zurück zum Zitat Hoffmeister S, Gerdom M, Bengelsdorf FR, Linder S, Flüchter S, Öztürk H, Blümke W, May A, Fischer RJ, Bahl H (2016) Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab Eng 36:37–47 Hoffmeister S, Gerdom M, Bengelsdorf FR, Linder S, Flüchter S, Öztürk H, Blümke W, May A, Fischer RJ, Bahl H (2016) Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab Eng 36:37–47
73.
Zurück zum Zitat Köpke M, Simpson S, Liew F (2012) Fermentation process for producing isopropanol using a recombinant microorganism. Patent, US20120252083 A1, Anmelder: LanzaTech New Zealand Ltd. Köpke M, Simpson S, Liew F (2012) Fermentation process for producing isopropanol using a recombinant microorganism. Patent, US20120252083 A1, Anmelder: LanzaTech New Zealand Ltd.
74.
Zurück zum Zitat Bengelsdorf FR, Poehlein A, Linder S, Erz C, Hummel T, Hoffmeister S, Daniel R, Dürre P (2016) Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Front Microbiol 7:1036 Bengelsdorf FR, Poehlein A, Linder S, Erz C, Hummel T, Hoffmeister S, Daniel R, Dürre P (2016) Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Front Microbiol 7:1036
75.
Zurück zum Zitat Kane MD, Breznak JA (1991) Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite Pterotermes occidentis. Arch Microbiol 156:91–98 Kane MD, Breznak JA (1991) Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite Pterotermes occidentis. Arch Microbiol 156:91–98
76.
Zurück zum Zitat Lynd L, Kerby R, Zeikus JG (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol 149:255–263 Lynd L, Kerby R, Zeikus JG (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol 149:255–263
77.
Zurück zum Zitat Liou JS, Blakwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091 Liou JS, Blakwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091
78.
Zurück zum Zitat Ueki T, Nevin KP, Woodard TL, Lovley DR (2014) Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5(5):e01636-14 Ueki T, Nevin KP, Woodard TL, Lovley DR (2014) Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5(5):e01636-14
79.
Zurück zum Zitat Grethlein AJ, Worden RM, Jain MK, Datta R (1991) Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J Ferment Bioeng 72:58–60 Grethlein AJ, Worden RM, Jain MK, Datta R (1991) Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J Ferment Bioeng 72:58–60
80.
Zurück zum Zitat Köpke M, Liew F (2012) Production of butanol from carbon monoxide by a recombinant microorganism. Patent, WO2012053905 A1, Anmelder: LanzaTech New Zealand Ltd. Köpke M, Liew F (2012) Production of butanol from carbon monoxide by a recombinant microorganism. Patent, WO2012053905 A1, Anmelder: LanzaTech New Zealand Ltd.
81.
Zurück zum Zitat Van Leeuwen BN, van der Wulp AM, Duijnstee I, van Maris AJ, Straathof AJ (2012) Fermentative production of isobutene. Appl Microbiol Biotechnol 93:1377–1387 Van Leeuwen BN, van der Wulp AM, Duijnstee I, van Maris AJ, Straathof AJ (2012) Fermentative production of isobutene. Appl Microbiol Biotechnol 93:1377–1387
82.
Zurück zum Zitat Güntner B (2016) Recombinant microorganism producing alkenes from acetyl-CoA. Patent, WO2016034691A1. Syngip Bv, Anmelder Güntner B (2016) Recombinant microorganism producing alkenes from acetyl-CoA. Patent, WO2016034691A1. Syngip Bv, Anmelder
83.
Zurück zum Zitat Furutani M, Uenishi A, Iwasa K, Jennewein S, Fischer R (2013) Recombinant cell and production method for isoprene. Patent, EP2913392A1. Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung, Sekisui Chemical Co Ltd, Anmelder Furutani M, Uenishi A, Iwasa K, Jennewein S, Fischer R (2013) Recombinant cell and production method for isoprene. Patent, EP2913392A1. Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung, Sekisui Chemical Co Ltd, Anmelder
84.
Zurück zum Zitat Beck Z, Cervin M, Chotani G, Diner B, Fan J, Peres C, Sanford K, Scotcher M, Wells D, Whited G (2014) Recombinant anaerobic acetogenic bacteria for production of isoprene and/or industrial bio-products using synthesis gas. US20140234926A1. Goodyear Tire and Rubber Co. & Danisco US Inc., Anmelder Beck Z, Cervin M, Chotani G, Diner B, Fan J, Peres C, Sanford K, Scotcher M, Wells D, Whited G (2014) Recombinant anaerobic acetogenic bacteria for production of isoprene and/or industrial bio-products using synthesis gas. US20140234926A1. Goodyear Tire and Rubber Co. & Danisco US Inc., Anmelder
85.
Zurück zum Zitat Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464 Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464
86.
Zurück zum Zitat Liew F, Henstra AM, Köpke M, Winzer K, Simpson SD, Minton NP (2017) Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 40:104–114 Liew F, Henstra AM, Köpke M, Winzer K, Simpson SD, Minton NP (2017) Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 40:104–114
87.
Zurück zum Zitat Huang H, Chai C, Li N, Rowe P, Minton NP, Yang S, Jiang W, Gu Y (2016) CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol 5(12):1355–1361 Huang H, Chai C, Li N, Rowe P, Minton NP, Yang S, Jiang W, Gu Y (2016) CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol 5(12):1355–1361
88.
Zurück zum Zitat Nagaraju S, Davies NK, Walker DJF, Köpke M, Simpson SD (2016) Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol Biofuels 9:219 Nagaraju S, Davies NK, Walker DJF, Köpke M, Simpson SD (2016) Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol Biofuels 9:219
89.
Zurück zum Zitat Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, Zengler K (2013) Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Fact 12:118 Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, Zengler K (2013) Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Fact 12:118
90.
Zurück zum Zitat Humphreys CM, Minton NP (2018) Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Curr Opin Biotechnol 50:174–181 Humphreys CM, Minton NP (2018) Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Curr Opin Biotechnol 50:174–181
91.
Zurück zum Zitat Valgepea K, Loi KQ, Behrendorff JB, Lemgruber RSP, Plan M, Hodson MP, Köpke M, Nielsen LK, Marcellin E (2017) Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metab Eng 41:202–211 Valgepea K, Loi KQ, Behrendorff JB, Lemgruber RSP, Plan M, Hodson MP, Köpke M, Nielsen LK, Marcellin E (2017) Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metab Eng 41:202–211
92.
Zurück zum Zitat Molitor B, Marcellin E, Angenent LT (2017) Overcoming the energetic limitations of syngas fermentation. Curr Opin Chem Biol 41:84–92 Molitor B, Marcellin E, Angenent LT (2017) Overcoming the energetic limitations of syngas fermentation. Curr Opin Chem Biol 41:84–92
93.
Zurück zum Zitat Ganigué R, Sánchez-Paredes P, Baneras L, Colprim J (2016) Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation. Front Microbiol 7:702 Ganigué R, Sánchez-Paredes P, Baneras L, Colprim J (2016) Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation. Front Microbiol 7:702
98.
Zurück zum Zitat Franke A, Clemmesen C, De Schryver P, Garcia-Gonzalez L, Miest JJ, Roth O (2017) Immunostimulatory effects of dietary poly-β-hydroxybutyrate in European sea bass postlarvae. Aquacult Res 48(12):5707–5717 Franke A, Clemmesen C, De Schryver P, Garcia-Gonzalez L, Miest JJ, Roth O (2017) Immunostimulatory effects of dietary poly-β-hydroxybutyrate in European sea bass postlarvae. Aquacult Res 48(12):5707–5717
106.
Zurück zum Zitat Volova TG, Kiselev EG, Shishatskaya EI, Zhila NO, Boyandin AN, Syrvacheva DA, Vinogradova ON, Kalacheva GS, Vasiliev AD, Peterson IV (2013) Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Bioresour Technol 146:215–222. https://doi.org/10.1016/j.biortech.2013.07.070CrossRef Volova TG, Kiselev EG, Shishatskaya EI, Zhila NO, Boyandin AN, Syrvacheva DA, Vinogradova ON, Kalacheva GS, Vasiliev AD, Peterson IV (2013) Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Bioresour Technol 146:215–222. https://​doi.​org/​10.​1016/​j.​biortech.​2013.​07.​070CrossRef
108.
Zurück zum Zitat Weuster-Botz D, Takors R (2018) Wachstumskinetik. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 45–70 Weuster-Botz D, Takors R (2018) Wachstumskinetik. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 45–70
109.
Zurück zum Zitat Schulte MJ, Wiltgen J, Ritter J, Mooney CB, Flickinger MC (2016) A high gas fraction, reduced power, syngas bioprocessing method demonstrated with a Clostridium ljungdahlii OTA1 paper biocomposite. Biotechnol Bioeng 113:1913–1923 Schulte MJ, Wiltgen J, Ritter J, Mooney CB, Flickinger MC (2016) A high gas fraction, reduced power, syngas bioprocessing method demonstrated with a Clostridium ljungdahlii OTA1 paper biocomposite. Biotechnol Bioeng 113:1913–1923
110.
Zurück zum Zitat Kao CY, Chen TY, Chang YB, Chiu TW, Lin HY, Chen CD, Chang JS, Lin CS (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol 166:485–493 Kao CY, Chen TY, Chang YB, Chiu TW, Lin HY, Chen CD, Chang JS, Lin CS (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol 166:485–493
Metadaten
Titel
Mikrobielle Verfahren zur Umsetzung von CO2 und CO
verfasst von
Dirk Weuster-Botz
Frank Kensy
Heleen De Wever
Linsey Garcia-Gonzalez
Copyright-Jahr
2020
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-60649-0_8