Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2023 | OriginalPaper | Buchkapitel

2. Millimeter-Wave Massive MIMO Vehicular Channel Modeling

verfasst von : Xiang Cheng, Shijian Gao, Liuqing Yang

Erschienen in: mmWave Massive MIMO Vehicular Communications

Verlag: Springer International Publishing

share
TEILEN

Abstract

This chapter works on developing a novel three-dimensional (3D) non-stationary irregular-shaped geometry-based stochastic model (IS-GBSM) for beyond 5G and 6G vehicle-to-vehicle (V2V) mmWave massive multiple-input multiple-output (MIMO) channels. The proposed IS-GBSM utilizes distinguishable dynamic clusters and static clusters to explore the impact of vehicular traffic density (VTD) on channel statistics. Specifically, the developed method generates dynamic/static correlated clusters by an improved K-Means clustering algorithm. Then, by employing a birth-death process based on correlated groups, the consistency in birth and death between dynamic/static correlated clusters during time-array evolution is modeled. Finally, extensive simulations are carried out and demonstrate that space-time-frequency non-stationarity has been accurately captured, and the influence of VTDs on channel statistics has been successfully explored.
Literatur
1.
Zurück zum Zitat W. Viriyasitavat, M. Boban, H. Tsai, A. Vasilakos, Vehicular communications: survey and challenges of channel and propagation models. IEEE Veh. Technol. Mag. 10(2), 55–66 (2015) CrossRef W. Viriyasitavat, M. Boban, H. Tsai, A. Vasilakos, Vehicular communications: survey and challenges of channel and propagation models. IEEE Veh. Technol. Mag. 10(2), 55–66 (2015) CrossRef
2.
Zurück zum Zitat I. Sen, D.W. Matolak, Vehicle-vehicle channel models for the 5-GHz band. IEEE Trans. Intell. Transp. Syst. 9(2), 235–245 (2008) CrossRef I. Sen, D.W. Matolak, Vehicle-vehicle channel models for the 5-GHz band. IEEE Trans. Intell. Transp. Syst. 9(2), 235–245 (2008) CrossRef
3.
Zurück zum Zitat C.X. Wang, X. Cheng, D.I. Laurenson, Vehicle-to-vehicle channel modeling and measurements: recent advances and future challenges. IEEE Commun. Mag. 47(11), 96–103 (2009) CrossRef C.X. Wang, X. Cheng, D.I. Laurenson, Vehicle-to-vehicle channel modeling and measurements: recent advances and future challenges. IEEE Commun. Mag. 47(11), 96–103 (2009) CrossRef
4.
Zurück zum Zitat R. He, B. Ai, G.L. Stuber, G. Wang, Z. Zhong, Geometrical-based modeling for millimeter-wave MIMO mobile-to-mobile channels. IEEE Trans. Veh. Tech. 67(4), 2848–2863 (2018) CrossRef R. He, B. Ai, G.L. Stuber, G. Wang, Z. Zhong, Geometrical-based modeling for millimeter-wave MIMO mobile-to-mobile channels. IEEE Trans. Veh. Tech. 67(4), 2848–2863 (2018) CrossRef
5.
Zurück zum Zitat R. He, et al., Propagation channels of 5G millimeter-wave vehicle-tovehicle communications: recent advances and future challenges. IEEE Veh. Technol. Mag. 15(1), 16–26 (2020) CrossRef R. He, et al., Propagation channels of 5G millimeter-wave vehicle-tovehicle communications: recent advances and future challenges. IEEE Veh. Technol. Mag. 15(1), 16–26 (2020) CrossRef
6.
Zurück zum Zitat X. Cheng, Z. Huang, S. Chen, 6G vehicular communication channel measurement, modeling, and application. IET Commun. 14(19), 3303–3311 (2020) CrossRef X. Cheng, Z. Huang, S. Chen, 6G vehicular communication channel measurement, modeling, and application. IET Commun. 14(19), 3303–3311 (2020) CrossRef
7.
Zurück zum Zitat X. Cheng, R. Zhang, L. Yang, 5G-Enabled Vehicular Communications and Networking, 1st edn. (Springer, Cham, 2019) X. Cheng, R. Zhang, L. Yang, 5G-Enabled Vehicular Communications and Networking, 1st edn. (Springer, Cham, 2019)
8.
Zurück zum Zitat X. Cheng, C. Chen, W. Zhang, Y. Yang, 5G-enabled cooperative intelligent vehicular (5GenCIV) framework: when Benz meets Marconi. IEEE Intell. Syst. 32(3), 53–59 (2017) CrossRef X. Cheng, C. Chen, W. Zhang, Y. Yang, 5G-enabled cooperative intelligent vehicular (5GenCIV) framework: when Benz meets Marconi. IEEE Intell. Syst. 32(3), 53–59 (2017) CrossRef
9.
Zurück zum Zitat X. Cheng, Q. Yao, M. Wen, C.-X. Wang, L. Song, B. Jiao, Wideband channel modeling and intercarrier interference cancellation for vehicle-to-vehicle communication systems. IEEE J. Sel. Areas Commun. 31(9), 434–448 (2013) CrossRef X. Cheng, Q. Yao, M. Wen, C.-X. Wang, L. Song, B. Jiao, Wideband channel modeling and intercarrier interference cancellation for vehicle-to-vehicle communication systems. IEEE J. Sel. Areas Commun. 31(9), 434–448 (2013) CrossRef
10.
Zurück zum Zitat J. Maurer, T. Fgen, W. Wiesbeck, A ray-optical channel model for vehicle-to-vehicle communication, in Proceedings in Physics: Fields, Networks, Computational Methods, and Systems in Modern Electrodynamics, ed. by P. Russer, M. Mongiardo (Springer, Berlin, 2004), pp. 243–254 CrossRef J. Maurer, T. Fgen, W. Wiesbeck, A ray-optical channel model for vehicle-to-vehicle communication, in Proceedings in Physics: Fields, Networks, Computational Methods, and Systems in Modern Electrodynamics, ed. by P. Russer, M. Mongiardo (Springer, Berlin, 2004), pp. 243–254 CrossRef
11.
Zurück zum Zitat L. Reichardt, T. Fugen, T. Zwick, Influence of antennas placement on car to car communications channel, in Proceedings of ECAP’09, Berlin (2009), pp. 630–634 L. Reichardt, T. Fugen, T. Zwick, Influence of antennas placement on car to car communications channel, in Proceedings of ECAP’09, Berlin (2009), pp. 630–634
12.
Zurück zum Zitat W. Wiesbeck, S. Knorzer, Characteristics of the mobile channel for high velocities, in Proceedings of ICEAA’07, Torino (2007), pp. 116–120 W. Wiesbeck, S. Knorzer, Characteristics of the mobile channel for high velocities, in Proceedings of ICEAA’07, Torino (2007), pp. 116–120
13.
Zurück zum Zitat G. Acosta-Marum, M.A. Ingram, Six time- and frequency- selective empirical channel models for vehicular wireless LANs. IEEE Veh. Technol. Mag. 2(4), 4–11 (2007) CrossRef G. Acosta-Marum, M.A. Ingram, Six time- and frequency- selective empirical channel models for vehicular wireless LANs. IEEE Veh. Technol. Mag. 2(4), 4–11 (2007) CrossRef
14.
Zurück zum Zitat Z. Huang, X. Zhang, X. Cheng, Non-geometrical stochastic model for non-stationary wideband vehicular communication channels. IET Commun. 14(1), 54–62 (2020) CrossRef Z. Huang, X. Zhang, X. Cheng, Non-geometrical stochastic model for non-stationary wideband vehicular communication channels. IET Commun. 14(1), 54–62 (2020) CrossRef
15.
Zurück zum Zitat Z. Huang, X. Cheng, A general 3D space-time-frequency non-stationary model for 6G channels. IEEE Trans. Wireless Commun. 20(1), 535–548 (2021) CrossRef Z. Huang, X. Cheng, A general 3D space-time-frequency non-stationary model for 6G channels. IEEE Trans. Wireless Commun. 20(1), 535–548 (2021) CrossRef
16.
Zurück zum Zitat X. Cheng, R. Zhang, L. Yang, Wireless towards the era of intelligent vehicles. IEEE Internet. Things. J. 6(1), 188–202 (2019) CrossRef X. Cheng, R. Zhang, L. Yang, Wireless towards the era of intelligent vehicles. IEEE Internet. Things. J. 6(1), 188–202 (2019) CrossRef
17.
Zurück zum Zitat A.K. Akki, F. Haber, A statistical model of mobile-to-mobile land communication channel. IEEE Trans. Veh. Technol. 35(1), 2–7 (1986) CrossRef A.K. Akki, F. Haber, A statistical model of mobile-to-mobile land communication channel. IEEE Trans. Veh. Technol. 35(1), 2–7 (1986) CrossRef
18.
Zurück zum Zitat X. Cheng, C.-X. Wang, D.I. Laurenson, S. Salous, A.V. Vasilakos, An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels. IEEE Trans. Wireless Commun. 8(9), 4824–4835 (2009) CrossRef X. Cheng, C.-X. Wang, D.I. Laurenson, S. Salous, A.V. Vasilakos, An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels. IEEE Trans. Wireless Commun. 8(9), 4824–4835 (2009) CrossRef
19.
Zurück zum Zitat A.G. Zajić, G.L. Stüber, Three-dimensional modeling, simulation, and capacity analysis of space–time correlated mobile-to-mobile channels. IEEE Trans. Veh. Technol. 57(4), 2042–2054 (2008) CrossRef A.G. Zajić, G.L. Stüber, Three-dimensional modeling, simulation, and capacity analysis of space–time correlated mobile-to-mobile channels. IEEE Trans. Veh. Technol. 57(4), 2042–2054 (2008) CrossRef
20.
Zurück zum Zitat A.G. Zajić, G.L. Stüber, Three-dimensional modeling and simulation of wideband MIMO mobile-to-mobile channels. IEEE Trans. Wireless Commun. 8(3), 1260–1275 (2009) CrossRef A.G. Zajić, G.L. Stüber, Three-dimensional modeling and simulation of wideband MIMO mobile-to-mobile channels. IEEE Trans. Wireless Commun. 8(3), 1260–1275 (2009) CrossRef
21.
Zurück zum Zitat X. Gao, F. Tufvesson, O. Edfors, Massive MIMO channels — measurements and models, in Proceddings of 2013 Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA (2013), pp. 280–284 X. Gao, F. Tufvesson, O. Edfors, Massive MIMO channels — measurements and models, in Proceddings of 2013 Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA (2013), pp. 280–284
22.
Zurück zum Zitat H. Jiang, C. Chen, J. Zhou, J. Dang, L. Wu, A general 3D non-stationary wideband twin-cluster channel model for 5G V2V tunnel communication environments. IEEE Access 7, 137744–137751 (2019) CrossRef H. Jiang, C. Chen, J. Zhou, J. Dang, L. Wu, A general 3D non-stationary wideband twin-cluster channel model for 5G V2V tunnel communication environments. IEEE Access 7, 137744–137751 (2019) CrossRef
24.
Zurück zum Zitat C.-X. Wang, J. Huang, H. Wang, X. Gao, X. You, Y. Hao, 6G wireless channel measurements and models: trends and challenges. IEEE Veh. Technol. Mag. 15(4), 22–32 (2020) CrossRef C.-X. Wang, J. Huang, H. Wang, X. Gao, X. You, Y. Hao, 6G wireless channel measurements and models: trends and challenges. IEEE Veh. Technol. Mag. 15(4), 22–32 (2020) CrossRef
25.
Zurück zum Zitat B.M. Eldowek, et al. 3D non-stationary vehicle-to-vehicle MIMO channel model for 5G millimeter-wave communications. Digit. Signal Process. 95, 102580 (2019) CrossRef B.M. Eldowek, et al. 3D non-stationary vehicle-to-vehicle MIMO channel model for 5G millimeter-wave communications. Digit. Signal Process. 95, 102580 (2019) CrossRef
26.
Zurück zum Zitat N. Czink, F. Kaltenberger, Y. Zhou, L. Bernadó, T. Zemen, X. Yin, Low-complexity geometry-based modeling of diffuse scattering, in Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), Barcelona (2010), pp. 1–4 N. Czink, F. Kaltenberger, Y. Zhou, L. Bernadó, T. Zemen, X. Yin, Low-complexity geometry-based modeling of diffuse scattering, in Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), Barcelona (2010), pp. 1–4
27.
Zurück zum Zitat A. Ghazal, et al., A non-stationary IMT-advanced MIMO channel model for high-mobility wireless communication systems. IEEE Trans. Wireless Commun. 16(4), 2057–2068 (2017) CrossRef A. Ghazal, et al., A non-stationary IMT-advanced MIMO channel model for high-mobility wireless communication systems. IEEE Trans. Wireless Commun. 16(4), 2057–2068 (2017) CrossRef
28.
Zurück zum Zitat O. Renaudin, V. Kolmonen, P. Vainikainen, C. Oestges, Wideband measurement-based modeling of inter-vehicle channels in the 5-GHz band. IEEE Trans. Veh. Technol. 62(8), 3531–3540 (2013) CrossRef O. Renaudin, V. Kolmonen, P. Vainikainen, C. Oestges, Wideband measurement-based modeling of inter-vehicle channels in the 5-GHz band. IEEE Trans. Veh. Technol. 62(8), 3531–3540 (2013) CrossRef
29.
Zurück zum Zitat S. Wu, C.-X. Wang, H. Aggoune, M.M. Alwakeel, X.-H. You, A general 3-D non-stationary 5G wireless channel model. IEEE Trans. Commun. 66(7), 3065–3078 (2018) CrossRef S. Wu, C.-X. Wang, H. Aggoune, M.M. Alwakeel, X.-H. You, A general 3-D non-stationary 5G wireless channel model. IEEE Trans. Commun. 66(7), 3065–3078 (2018) CrossRef
30.
Zurück zum Zitat L. Bai, Z. Huang, Y. Li, X. Cheng, A 3D cluster-based channel model for 5G and beyond vehicle-to-vehicle massive MIMO channels. IEEE Trans. Veh. Technol. 70(9), 8401–8414 (2021) CrossRef L. Bai, Z. Huang, Y. Li, X. Cheng, A 3D cluster-based channel model for 5G and beyond vehicle-to-vehicle massive MIMO channels. IEEE Trans. Veh. Technol. 70(9), 8401–8414 (2021) CrossRef
31.
Zurück zum Zitat H. Hofstertter, A.-F. Molisch, N. Czink, A twin-cluster MIMO channel model, in Proceedings of EuCAP, Nice (2006), pp. 1–8 H. Hofstertter, A.-F. Molisch, N. Czink, A twin-cluster MIMO channel model, in Proceedings of EuCAP, Nice (2006), pp. 1–8
32.
Zurück zum Zitat G.L. Stüber, Principles of Mobile Communications, 2nd edn. (Norwell, Kluwer, 2011) G.L. Stüber, Principles of Mobile Communications, 2nd edn. (Norwell, Kluwer, 2011)
33.
Zurück zum Zitat M. Lehsaini, M.B. Benmahdi, An improved K-means cluster-based routing scheme for wireless sensor networks, in Proceedings of ISPS, Algiers (2018), pp. 1–6 M. Lehsaini, M.B. Benmahdi, An improved K-means cluster-based routing scheme for wireless sensor networks, in Proceedings of ISPS, Algiers (2018), pp. 1–6
34.
Zurück zum Zitat P. Bholowalia, A. Kumar, EBK-means: a clustering technique based on Elbow method and K-means in WSN. Int. J. Comput. Appl. 105(9), 17–24 (2014) P. Bholowalia, A. Kumar, EBK-means: a clustering technique based on Elbow method and K-means in WSN. Int. J. Comput. Appl. 105(9), 17–24 (2014)
35.
Zurück zum Zitat D. Marutho, S.H. Handaka, E. Wijaya, Muljono, The determination of cluster number at k-mean using elbow method and purity evaluation on headline news, in Proceedings of ISEMANTIC, Semarang (2018), pp. 533–538 D. Marutho, S.H. Handaka, E. Wijaya, Muljono, The determination of cluster number at k-mean using elbow method and purity evaluation on headline news, in Proceedings of ISEMANTIC, Semarang (2018), pp. 533–538
36.
Zurück zum Zitat R.C. Qiu, I.-T. Liu, Multipath resolving with frequency dependence for wide-band wireless channel modeling. IEEE Trans. Veh. Technol. 48(1), 273–285 (1999) CrossRef R.C. Qiu, I.-T. Liu, Multipath resolving with frequency dependence for wide-band wireless channel modeling. IEEE Trans. Veh. Technol. 48(1), 273–285 (1999) CrossRef
37.
Zurück zum Zitat R.C. Qiu, A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design. IEEE J. Sel. Areas Commun. 20(9), 1628–1637 (2002) CrossRef R.C. Qiu, A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design. IEEE J. Sel. Areas Commun. 20(9), 1628–1637 (2002) CrossRef
38.
Zurück zum Zitat M.R. Akdenizet, et al. Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun. 32(6), 1164–1179 (2014) CrossRef M.R. Akdenizet, et al. Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun. 32(6), 1164–1179 (2014) CrossRef
39.
Zurück zum Zitat Study on channel model for frequencies from 0.5 to 100 GHz, version 14.2.0. Document 3GPP T.R. 38.901 (2017) Study on channel model for frequencies from 0.5 to 100 GHz, version 14.2.0. Document 3GPP T.R. 38.901 (2017)
40.
Zurück zum Zitat A. Papoulis, S.U. Pillai, Probability, Random variables, Stochastic Processes, 4nd edn. (McGraw-Hill, New York, 2002) A. Papoulis, S.U. Pillai, Probability, Random variables, Stochastic Processes, 4nd edn. (McGraw-Hill, New York, 2002)
41.
Zurück zum Zitat J. Park, J. Lee, J. Liang, K. Kim, K. Lee, M. Kim, Millimeter wave vehicular blockage characteristics based on 28 GHz measurements, in Proceedings of 2017 IEEE VTC-Fall, Toronto (2017), pp. 1–5 J. Park, J. Lee, J. Liang, K. Kim, K. Lee, M. Kim, Millimeter wave vehicular blockage characteristics based on 28 GHz measurements, in Proceedings of 2017 IEEE VTC-Fall, Toronto (2017), pp. 1–5
42.
Zurück zum Zitat S. Wu, C.-X. Wang, H. Haas, E.-H.M. Aggoune, M.M. Alwakeel, B. Ai, A non-stationary wideband channel model for massive MIMO communication systems. IEEE Trans. Wireless Commun. 14(3), 1434–1446 (2015) CrossRef S. Wu, C.-X. Wang, H. Haas, E.-H.M. Aggoune, M.M. Alwakeel, B. Ai, A non-stationary wideband channel model for massive MIMO communication systems. IEEE Trans. Wireless Commun. 14(3), 1434–1446 (2015) CrossRef
43.
Zurück zum Zitat Y. Li, X. Cheng, N. Zhang, Deterministic and stochastic simulators for non-isotropic V2V-MIMO wideband channels. China Commun. 15(7), 18–29 (2018) CrossRef Y. Li, X. Cheng, N. Zhang, Deterministic and stochastic simulators for non-isotropic V2V-MIMO wideband channels. China Commun. 15(7), 18–29 (2018) CrossRef
44.
Zurück zum Zitat A.G. Zajić, G.L. Stüber, T.G. Pratt, S.T. Nguyen, Wideband MIMO mobile-to-mobile channels: geometry-based statistical modeling with experimental verification. IEEE Trans. Veh. Technol. 58(2), 517–534 (2009) CrossRef A.G. Zajić, G.L. Stüber, T.G. Pratt, S.T. Nguyen, Wideband MIMO mobile-to-mobile channels: geometry-based statistical modeling with experimental verification. IEEE Trans. Veh. Technol. 58(2), 517–534 (2009) CrossRef
45.
Zurück zum Zitat A. Fayziyev, M. Pätzold, E. Masson, Y. Cocheril, M. Berbineau, A measurement-based channel model for vehicular communications in tunnels, in Proceedings of IEEE WCNC’14, Istanbul (2014), pp. 1–5 A. Fayziyev, M. Pätzold, E. Masson, Y. Cocheril, M. Berbineau, A measurement-based channel model for vehicular communications in tunnels, in Proceedings of IEEE WCNC’14, Istanbul (2014), pp. 1–5
46.
Zurück zum Zitat M. García, M. Táboas, E. Cid, Millimeter wave radio channel characterization for 5G vehicle-to-vehicle communications. Measurement 95, 223–229 (2018) CrossRef M. García, M. Táboas, E. Cid, Millimeter wave radio channel characterization for 5G vehicle-to-vehicle communications. Measurement 95, 223–229 (2018) CrossRef
Metadaten
Titel
Millimeter-Wave Massive MIMO Vehicular Channel Modeling
verfasst von
Xiang Cheng
Shijian Gao
Liuqing Yang
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-030-97508-1_2