Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

02.01.2021

Minimizing Critical Event Delay and Maximizing Lifetime in a Hybrid Data-Gathering Protocol for WSNs

verfasst von: Debanjan Sadhukhan, Seela Veerabhadreswara Rao

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In time driven data-gathering, sensor nodes generate periodic data which are gathered at the base-station. Whereas in event driven data gathering, sensors remain idle until a critical event occurs and then the event information is sent quickly to the central unit. In hybrid data-gathering, the nodes switches between time and event-driven strategy. In this paper, we propose a hybrid data-gathering protocol that minimizes the critical event reporting delay, using anycasting forwarding techniques, and maximizes the network lifetime using sleep/wake scheduling. In our protocol, the sensor nodes generate periodic events and if the nodes detect a critical event, the event information is sent quickly to the central unit. We estimate the expected critical event reporting delay using stochastic approach and validate the same in a Monte-Carlo simulation. We show the effectiveness of our protocol, that minimizes the critical event reporting delay, using ns2 simulation, and compare our protocol with existing hybrid data-gathering protocols.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sadhukhan, D., & Rao, S. V. (2019). Minimum cost event driven WSN with spatial differentiated QOS requirements. Wireless Networks, 25(7), 3899–3915.CrossRef Sadhukhan, D., & Rao, S. V. (2019). Minimum cost event driven WSN with spatial differentiated QOS requirements. Wireless Networks, 25(7), 3899–3915.CrossRef
2.
Zurück zum Zitat Wu, Y., Fahmy, S., & Shroff, N. B. (2009). Optimal sleep/wake scheduling for time-synchronized sensor networks with qos guarantees. IEEE/ACM Transactions on Networking, 17(5), 1508–1521.CrossRef Wu, Y., Fahmy, S., & Shroff, N. B. (2009). Optimal sleep/wake scheduling for time-synchronized sensor networks with qos guarantees. IEEE/ACM Transactions on Networking, 17(5), 1508–1521.CrossRef
3.
Zurück zum Zitat Kim Joohwan SNB Lin Xiaojun. (2010). Minimizing delay and maximizing lifetime for wireless sensor networks with anycast. IEEE/ACM Transactions on Networking, 18(2), 515–528.CrossRef Kim Joohwan SNB Lin Xiaojun. (2010). Minimizing delay and maximizing lifetime for wireless sensor networks with anycast. IEEE/ACM Transactions on Networking, 18(2), 515–528.CrossRef
4.
Zurück zum Zitat Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.CrossRef Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.CrossRef
5.
Zurück zum Zitat Swain, A. R., & Hansdah, R. (2015). A model for the classification and survey of clock synchronization protocols in WSNs. Ad Hoc Networks, 27, 219–241.CrossRef Swain, A. R., & Hansdah, R. (2015). A model for the classification and survey of clock synchronization protocols in WSNs. Ad Hoc Networks, 27, 219–241.CrossRef
6.
Zurück zum Zitat Bagaa, M., & Djenouri, D. (2015). Synchronization protocols and implementation issues in wireless sensor networks: A review. IEEE Systems Journal, 40, 617–627 Bagaa, M., & Djenouri, D. (2015). Synchronization protocols and implementation issues in wireless sensor networks: A review. IEEE Systems Journal, 40, 617–627
7.
Zurück zum Zitat Afsar, M. M., & Tayarani-N, M. H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer applications, 46, 198–226.CrossRef Afsar, M. M., & Tayarani-N, M. H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer applications, 46, 198–226.CrossRef
8.
Zurück zum Zitat Diaz, S., Mendez, D., & Kraemer, R. (2019). A review on self-healing and self-organizing techniques for wireless sensor networks. Journal of Circuits, Systems and Computers, 28(05), 1930005.CrossRef Diaz, S., Mendez, D., & Kraemer, R. (2019). A review on self-healing and self-organizing techniques for wireless sensor networks. Journal of Circuits, Systems and Computers, 28(05), 1930005.CrossRef
9.
Zurück zum Zitat Dhand, G., & Tyagi, S. (2016). Data aggregation techniques in WSN: Survey. Procedia Computer Science, 92, 378–384.CrossRef Dhand, G., & Tyagi, S. (2016). Data aggregation techniques in WSN: Survey. Procedia Computer Science, 92, 378–384.CrossRef
10.
Zurück zum Zitat Sadhukhan, D., & Rao, S. V. (2017). Effect of clock skew in event driven, delay constrained heterogeneous WSN with anycast. Wireless Personal Communications, 97(4), 4967–4980.CrossRef Sadhukhan, D., & Rao, S. V. (2017). Effect of clock skew in event driven, delay constrained heterogeneous WSN with anycast. Wireless Personal Communications, 97(4), 4967–4980.CrossRef
11.
Zurück zum Zitat Sadhukhan, D., & Rao, S. V. (2020). Energy efficient multi-beacon guard method for periodic data gathering in time-synchronized WSN. Wireless Networks, 26(7), 5337–5354.CrossRef Sadhukhan, D., & Rao, S. V. (2020). Energy efficient multi-beacon guard method for periodic data gathering in time-synchronized WSN. Wireless Networks, 26(7), 5337–5354.CrossRef
12.
Zurück zum Zitat Sichitiu, M. (2004). Cross-layer scheduling for power efficiency in wireless sensor networks. In Proceedings of IEEE infocom. Sichitiu, M. (2004). Cross-layer scheduling for power efficiency in wireless sensor networks. In Proceedings of IEEE infocom.
13.
Zurück zum Zitat Rajendran, V., Obraczka, K., & Garcia-Luna-Aceves, J. (2006). Energy-efficient, collision- free medium access control for wireless sensor networks. Journal of Wireless Networking, 12, 63–78.CrossRef Rajendran, V., Obraczka, K., & Garcia-Luna-Aceves, J. (2006). Energy-efficient, collision- free medium access control for wireless sensor networks. Journal of Wireless Networking, 12, 63–78.CrossRef
14.
Zurück zum Zitat Zhao, Y., Wu, J., & Lu, S. (2010). Vbs: Maximum lifetime sleep scheduling for wireless sensor networks using virtual backbones. In Proceedings of IEEE infocom. Zhao, Y., Wu, J., & Lu, S. (2010). Vbs: Maximum lifetime sleep scheduling for wireless sensor networks using virtual backbones. In Proceedings of IEEE infocom.
15.
Zurück zum Zitat Jang, U., Lee, S., & Yoo, S. (2012). Optimal wake-up scheduling of data gathering trees for wireless sensor networks. Journal of Parallel and Distributed Computing, 72, 536–546.CrossRef Jang, U., Lee, S., & Yoo, S. (2012). Optimal wake-up scheduling of data gathering trees for wireless sensor networks. Journal of Parallel and Distributed Computing, 72, 536–546.CrossRef
16.
Zurück zum Zitat Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(2), 551–591.CrossRef Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(2), 551–591.CrossRef
17.
Zurück zum Zitat Awerbuch, B., Brinkmann, A., & Scheideler, C. (2002). Anycasting and multicasting in adversarial systems: Routing and admission control. Baltimore, MD: The Johns Hopkins University.MATH Awerbuch, B., Brinkmann, A., & Scheideler, C. (2002). Anycasting and multicasting in adversarial systems: Routing and admission control. Baltimore, MD: The Johns Hopkins University.MATH
18.
Zurück zum Zitat Hu, W., Bulusu, N., & Jha, S. (2005). A communication paradigm for hybrid sensor/actuator networks*. International Journal of Wireless Information Networks, 12(1), 47–59.CrossRef Hu, W., Bulusu, N., & Jha, S. (2005). A communication paradigm for hybrid sensor/actuator networks*. International Journal of Wireless Information Networks, 12(1), 47–59.CrossRef
19.
Zurück zum Zitat Zorzi, M., & Rao, R. R. (2003). Geographic random forwarding (GeRaF) for ad hoc and sensor networks: Energy and latency performance. IEEE Transactions on Mobile Computing, 2(4), 349–365.CrossRef Zorzi, M., & Rao, R. R. (2003). Geographic random forwarding (GeRaF) for ad hoc and sensor networks: Energy and latency performance. IEEE Transactions on Mobile Computing, 2(4), 349–365.CrossRef
20.
Zurück zum Zitat Liu, S., Fan, K.W., & Sinha, P. (2007). Cmac: An energy efficient mac layer protocol using convergent packet forwarding for wireless sensor networks. In 4th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, 2007. SECON ’07 (pp .11–20). https://doi.org/10.1109/SAHCN.2007.4292813. Liu, S., Fan, K.W., & Sinha, P. (2007). Cmac: An energy efficient mac layer protocol using convergent packet forwarding for wireless sensor networks. In 4th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, 2007. SECON ’07 (pp .11–20). https://​doi.​org/​10.​1109/​SAHCN.​2007.​4292813.
21.
Zurück zum Zitat Biswas, S., & Morris, R. (2005). Exor: Opportunistic multi-hop routing for wireless networks. In Proceedings of ACM SIGCOMM. Biswas, S., & Morris, R. (2005). Exor: Opportunistic multi-hop routing for wireless networks. In Proceedings of ACM SIGCOMM.
23.
Zurück zum Zitat Rossi, M., Zorzi, M., & Rao, R. R. (2008). Statistically assisted routing algorithms (SARA) for hop count based forwarding in wireless sensor networks. Journal of Wireless Networks, 14(1), 55–70.CrossRef Rossi, M., Zorzi, M., & Rao, R. R. (2008). Statistically assisted routing algorithms (SARA) for hop count based forwarding in wireless sensor networks. Journal of Wireless Networks, 14(1), 55–70.CrossRef
24.
Zurück zum Zitat Mitton, N., Simplot-Ryl, D., & Stojmenovic, I. (2009). Guaranteed delivery for geographical anycasting in wireless multi-sink sensor and sensor-actor networks. In Proceedings of 28th annual IEEE conference on computer communications (INFOCOM 2009). Mitton, N., Simplot-Ryl, D., & Stojmenovic, I. (2009). Guaranteed delivery for geographical anycasting in wireless multi-sink sensor and sensor-actor networks. In Proceedings of 28th annual IEEE conference on computer communications (INFOCOM 2009).
25.
Zurück zum Zitat Kim Joohwan SNB Lin Xiaojun. (2011). Optimal anycast technique for delay-sensitive energy-constrained asynchronous sensor networks. IEEE/ACM Transactions on Networking, 19(2), 484–497.CrossRef Kim Joohwan SNB Lin Xiaojun. (2011). Optimal anycast technique for delay-sensitive energy-constrained asynchronous sensor networks. IEEE/ACM Transactions on Networking, 19(2), 484–497.CrossRef
26.
Zurück zum Zitat Manjeshwar, A., & Agrawal, D. (2002). Apteen: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless. In Proceedings of IEEE IPDPS Manjeshwar, A., & Agrawal, D. (2002). Apteen: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless. In Proceedings of IEEE IPDPS
27.
Zurück zum Zitat Srisathapornphat, C., Jaikaeo, C., & Shen, C. C. (2000). Sensor information networking architecture. In 2000 international workshops on parallel processing, 2000. Proceedings (pp. 23–30). IEEE. Srisathapornphat, C., Jaikaeo, C., & Shen, C. C. (2000). Sensor information networking architecture. In 2000 international workshops on parallel processing, 2000. Proceedings (pp. 23–30). IEEE.
28.
Zurück zum Zitat Lee, B. D., & Lim, K. H. (2012). An energy-efficient hybrid data-gathering protocol based on the dynamic switching of reporting schemes in wireless sensor networks. IEEE Systems Journal, 6(3), 378–387.CrossRef Lee, B. D., & Lim, K. H. (2012). An energy-efficient hybrid data-gathering protocol based on the dynamic switching of reporting schemes in wireless sensor networks. IEEE Systems Journal, 6(3), 378–387.CrossRef
29.
Zurück zum Zitat Lee, B. D., & Lim, K. H. (2011). An energy-efficient hybrid data-gathering protocol based on the dynamic switching of reporting schemes in wireless sensor networks. IEEE Systems Journal, 6(3), 378–387. Lee, B. D., & Lim, K. H. (2011). An energy-efficient hybrid data-gathering protocol based on the dynamic switching of reporting schemes in wireless sensor networks. IEEE Systems Journal, 6(3), 378–387.
30.
Zurück zum Zitat Bhuiyan, M. Z. A., Wu, J., Wang, G., Wang, T., & Hassan, M. M. (2017). e-sampling: Event-sensitive autonomous adaptive sensing and low-cost monitoring in networked sensing systems. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 12(1), 1–29.CrossRef Bhuiyan, M. Z. A., Wu, J., Wang, G., Wang, T., & Hassan, M. M. (2017). e-sampling: Event-sensitive autonomous adaptive sensing and low-cost monitoring in networked sensing systems. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 12(1), 1–29.CrossRef
31.
Zurück zum Zitat Nagarajan, R., & Dhanasekaran, R. (2018). Energy efficient data transmission approaches for wireless industrial automation. Current Signal Transduction Therapy, 13(1), 37–43.CrossRef Nagarajan, R., & Dhanasekaran, R. (2018). Energy efficient data transmission approaches for wireless industrial automation. Current Signal Transduction Therapy, 13(1), 37–43.CrossRef
32.
Zurück zum Zitat Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys & Tutorials, 16(4), 1996–2018.CrossRef Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys & Tutorials, 16(4), 1996–2018.CrossRef
34.
Zurück zum Zitat Hu, Y., Niu, Y., Lam, J., & Shu, Z. (2017). An energy-efficient adaptive overlapping clustering method for dynamic continuous monitoring in wsns. IEEE Sensors Journal, 17(3), 834–847.CrossRef Hu, Y., Niu, Y., Lam, J., & Shu, Z. (2017). An energy-efficient adaptive overlapping clustering method for dynamic continuous monitoring in wsns. IEEE Sensors Journal, 17(3), 834–847.CrossRef
35.
Zurück zum Zitat Bandyopadhyay, S., & Coyle, E. J. (2003). An energy efficient hierarchical clustering algorithm for wireless sensor networks. In INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications (Vol. 3, pp. 1713–1723). IEEE Societies. https://doi.org/10.1109/INFCOM.2003.1209194. Bandyopadhyay, S., & Coyle, E. J. (2003). An energy efficient hierarchical clustering algorithm for wireless sensor networks. In INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications (Vol. 3, pp. 1713–1723). IEEE Societies. https://​doi.​org/​10.​1109/​INFCOM.​2003.​1209194.
36.
Zurück zum Zitat Gandham, S., Zhang, Y., & Huang, Q. (2008). Distributed time-optimal scheduling for convergecast in wireless sensor networks. Computer Networks, 52(3), 610–629.CrossRef Gandham, S., Zhang, Y., & Huang, Q. (2008). Distributed time-optimal scheduling for convergecast in wireless sensor networks. Computer Networks, 52(3), 610–629.CrossRef
37.
Zurück zum Zitat Ma, J., Lou, W., Wu, Y., Yang Li, X., & Chen, G. (2009). Energy efficient tdma sleep scheduling in wireless sensor networks. In Proceedings of IEEE INFOCOM Ma, J., Lou, W., Wu, Y., Yang Li, X., & Chen, G. (2009). Energy efficient tdma sleep scheduling in wireless sensor networks. In Proceedings of IEEE INFOCOM
38.
Zurück zum Zitat Elson, J., Girod, L., & Estrin, D. (2002). Fine-grained network time synchronization using reference broadcasts. In Proceedings of USENIX/ACM OSDI. Elson, J., Girod, L., & Estrin, D. (2002). Fine-grained network time synchronization using reference broadcasts. In Proceedings of USENIX/ACM OSDI.
Metadaten
Titel
Minimizing Critical Event Delay and Maximizing Lifetime in a Hybrid Data-Gathering Protocol for WSNs
verfasst von
Debanjan Sadhukhan
Seela Veerabhadreswara Rao
Publikationsdatum
02.01.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07999-4

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt