Skip to main content

2020 | OriginalPaper | Buchkapitel

Mining Attribute Evolution Rules in Dynamic Attributed Graphs

verfasst von : Philippe Fournier-Viger, Ganghuan He, Jerry Chun-Wei Lin, Heitor Murilo Gomes

Erschienen in: Big Data Analytics and Knowledge Discovery

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A dynamic attributed graph is a graph that changes over time and where each vertex is described using multiple continuous attributes. Such graphs are found in numerous domains, e.g., social network analysis. Several studies have been done on discovering patterns in dynamic attributed graphs to reveal how attribute(s) change over time. However, many algorithms restrict all attribute values in a pattern to follow the same trend (e.g. increase) and the set of vertices in a pattern to be fixed, while others consider that a single vertex may influence its neighbors. As a result, these algorithms are unable to find complex patterns that show the influence of multiple vertices on many other vertices in terms of several attributes and different trends. This paper addresses this issue by proposing to discover a novel type of patterns called attribute evolution rules (AER). These rules indicate how changes of attribute values of multiple vertices may influence those of others with a high confidence. An efficient algorithm named AER-Miner is proposed to find these rules. Experiments on real data show AER-Miner is efficient and that AERs can provide interesting insights about dynamic attributed graphs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
It was observed using computer simulations that the number of connected labeled graphs with \(v = 2, 3, 4, 5, 6, 7\), and 8 nodes is 1, 4, 38, 728, 26,704, 1,866,256, and 251,548,592, respectively (https://​oeis.​org/​A001187).
 
Literatur
1.
Zurück zum Zitat Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994) Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)
3.
Zurück zum Zitat Borgwardt, K., Kriegel, H., Wackersreuther, P.: Pattern mining in frequent dynamic subgraphs. In: Proceedings of the 6th IEEE International Conference on Data Mining, pp. 1818–822 (2006) Borgwardt, K., Kriegel, H., Wackersreuther, P.: Pattern mining in frequent dynamic subgraphs. In: Proceedings of the 6th IEEE International Conference on Data Mining, pp. 1818–822 (2006)
7.
Zurück zum Zitat Fournier-Viger, P., Cheng, C., Cheng, Z.X., Lin, J.C.W., Selmaoui-Folcher, N.: Mining significant trend sequences in dynamic attributed graphs. Knowl. Based Syst. 182(15), 1–25 (2019) Fournier-Viger, P., Cheng, C., Cheng, Z.X., Lin, J.C.W., Selmaoui-Folcher, N.: Mining significant trend sequences in dynamic attributed graphs. Knowl. Based Syst. 182(15), 1–25 (2019)
9.
Zurück zum Zitat Jin, R., McCallen, S., Almaas, E.: Trend motif: a graph mining approach for analysis of dynamic complex networks. In: Proceedings of the 7th IEEE International Conference on Data Mining, pp. 541–546. IEEE (2007) Jin, R., McCallen, S., Almaas, E.: Trend motif: a graph mining approach for analysis of dynamic complex networks. In: Proceedings of the 7th IEEE International Conference on Data Mining, pp. 541–546. IEEE (2007)
10.
Zurück zum Zitat Kaytoue-Uberall, M., Pitarch, Y., Plantevit, M., Robardet, C.: Triggering patterns of topology changes in dynamic graphs. In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 158–165 (2014) Kaytoue-Uberall, M., Pitarch, Y., Plantevit, M., Robardet, C.: Triggering patterns of topology changes in dynamic graphs. In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 158–165 (2014)
12.
Zurück zum Zitat Leung, C.W., Lim, E., Lo, D., Weng, J.: Mining interesting link formation rules in social networks. In: Proceedings of the 19th ACM Conference on Information and Knowledge Management, pp. 209–218 (2010) Leung, C.W., Lim, E., Lo, D., Weng, J.: Mining interesting link formation rules in social networks. In: Proceedings of the 19th ACM Conference on Information and Knowledge Management, pp. 209–218 (2010)
13.
Zurück zum Zitat Ozaki, T., Etoh, M.: Correlation and contrast link formation patterns in a time evolving graph. In: Proceedings of the Workshops of 11th IEEE International Conference on Data Mining, pp. 1147–1154 (2011) Ozaki, T., Etoh, M.: Correlation and contrast link formation patterns in a time evolving graph. In: Proceedings of the Workshops of 11th IEEE International Conference on Data Mining, pp. 1147–1154 (2011)
14.
Zurück zum Zitat Scharwächter, E., Müller, E., Donges, J.F., Hassani, M., Seidl, T.: Detecting change processes in dynamic networks by frequent graph evolution rule mining. In: Proceedings of the 16th IEEE International Conference on Data Mining, pp. 1191–1196 (2016) Scharwächter, E., Müller, E., Donges, J.F., Hassani, M., Seidl, T.: Detecting change processes in dynamic networks by frequent graph evolution rule mining. In: Proceedings of the 16th IEEE International Conference on Data Mining, pp. 1191–1196 (2016)
15.
Zurück zum Zitat Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 721–724 (2002) Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 721–724 (2002)
Metadaten
Titel
Mining Attribute Evolution Rules in Dynamic Attributed Graphs
verfasst von
Philippe Fournier-Viger
Ganghuan He
Jerry Chun-Wei Lin
Heitor Murilo Gomes
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59065-9_14