Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2014 | Ausgabe 3/2014

Cluster Computing 3/2014

Mining-based associative image filtering using harmonic mean

Zeitschrift:
Cluster Computing > Ausgabe 3/2014
Autoren:
Hoill Jung, Kyung-Yong Chung

Abstract

With the development of IT convergence technologies, users can now more easily access useful information. These days, diverse and far-reaching information is being rapidly produced and distributed instantly in digitized format. Studies are continuously seeking to develop more efficient methods of delivering information to a greater number of users. Image filtering, which extracts features of interest from images, was developed to address the weakness of collaborative filtering, which is limited to superficial data analysis. However, image filtering has its own weakness of requiring complicated calculations to obtain the similarity between images. In this study, to resolve these problems, we propose associative image filtering based on the mining method utilizing the harmonic mean. Using data mining’s Apriori algorithm, this study investigated the association among preferred images from an associative image group and obtained a prediction based on user preference mean. In so doing, we observed a positive relationship between the various image preferences and the various distances between images’ color histograms. Preference mean was calculated based on the arithmetic mean, geometric mean, and harmonic mean. We found through performance analysis that the harmonic mean had the highest accuracy. In associative image filtering, we used the harmonic mean in order to anticipate preferences. In testing accuracy with MAE utilizing the proposed method, this study demonstrated an improvement of approximately 12 % on average compared to previous collaborative image filtering.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2014

Cluster Computing 3/2014 Zur Ausgabe

Premium Partner

    Bildnachweise