Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.01.2018

Mining distinguishing subsequence patterns with nonoverlapping condition

Zeitschrift:
Cluster Computing
Autoren:
Youxi Wu, Yuehua Wang, Jingyu Liu, Ming Yu, Jing Liu, Yan Li

Abstract

Distinguishing subsequence patterns mining aims to discover the differences between different categories of sequence databases and to express characteristics of classes. It plays an important role in biomedicine, feature information selection, time-series classification, and other areas. The existing distinguishing subsequence patterns mining only focuses on whether a pattern appears in a sequence, regardless of the number of occurrences of the pattern in the sequence and the proportion of the pattern in the entire sequence database, which affects the discovery of the distinguishing patterns when there are a large number of irrelevant occurrences. Therefore, the nonoverlapping conditional distinguishing subsequence patterns mining algorithm is proposed. In this paper, we focus on the number of nonoverlapping occurrences that effectively reduce the number of irrelevant or redundant occurrences, and in this way, the number of occurrences can be better grasped. At the same time, we use a specially designed data structure, namely, a Nettree, to avoid backtracking. In addition, we use the distinguishing patterns as classification features, and carry out classification experiments on DNA sequences and time-series data with two classes. Extensive experimental results and comparisons demonstrate the efficiency of the proposed algorithm and the correctness of the feature extraction.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise