Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

24.06.2020 | Regular Paper | Ausgabe 10/2020

Knowledge and Information Systems 10/2020

Mining evolutions of complex spatial objects using a single-attributed Directed Acyclic Graph

Zeitschrift:
Knowledge and Information Systems > Ausgabe 10/2020
Autoren:
Frédéric Flouvat, Nazha Selmaoui-Folcher, Jérémy Sanhes, Chengcheng Mu, Claude Pasquier, Jean-François Boulicaut
Wichtige Hinweise
This research was supported by the Project FOSTER ANR-2010-COSI-012-01 funded by the French Ministry of Higher Education and Research.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Directed acyclic graphs (DAGs) are used in many domains ranging from computer science to bioinformatics, including industry and geoscience. They enable to model complex evolutions where spatial objects (e.g., soil erosion) may move, (dis)appear, merge or split. We study a new graph-based representation, called attributed DAG (a-DAG). It enables to capture interactions between objects as well as information on objects (e.g., characteristics or events). In this paper, we focus on pattern mining in such data. Our patterns, called weighted paths, offer a good trade-off between expressiveness and complexity. Frequency and compactness constraints are used to filter out uninteresting patterns. These constraints lead to an exact condensed representation (without loss of information) in the single-graph setting. A depth-first search strategy and an optimized data structure are proposed to achieve the efficiency of weighted path discovery. It does a progressive extension of patterns based on database projections. Relevance, scalability and genericity are illustrated by means of qualitative and quantitative results when mining various real and synthetic datasets. In particular, we show how such an approach can be used to monitor soil erosion using remote sensing and geographical information system (GIS) data.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2020

Knowledge and Information Systems 10/2020 Zur Ausgabe

Premium Partner