Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

20.06.2015 | Ausgabe 1/2016

Optimization and Engineering 1/2016

MISO: mixed-integer surrogate optimization framework

Zeitschrift:
Optimization and Engineering > Ausgabe 1/2016
Autor:
Juliane Müller
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s11081-015-9281-2) contains supplementary material, which is available to authorized users.

Abstract

We introduce MISO, the mixed-integer surrogate optimization framework. MISO aims at solving computationally expensive black-box optimization problems with mixed-integer variables. This type of optimization problem is encountered in many applications for which time consuming simulation codes must be run in order to obtain an objective function value. Examples include optimal reliability design and structural optimization. A single objective function evaluation may take from several minutes to hours or even days. Thus, only very few objective function evaluations are allowable during the optimization. The development of algorithms for this type of optimization problems has, however, rarely been addressed in the literature. Because the objective function is black-box, derivatives are not available and numerically approximating the derivatives requires a prohibitively large number of function evaluations. Therefore, we use computationally cheap surrogate models to approximate the expensive objective function and to decide at which points in the variable domain the expensive objective function should be evaluated. We develop a general surrogate model framework and show how sampling strategies of well-known surrogate model algorithms for continuous optimization can be modified for mixed-integer variables. We introduce two new algorithms that combine different sampling strategies and local search to obtain high-accuracy solutions. We compare MISO in numerical experiments to a genetic algorithm, NOMAD version 3.6.2, and SO-MI. The results show that MISO is in general more efficient than NOMAD and the genetic algorithm with respect to finding improved solutions within a limited budget of allowable evaluations. The performance of MISO depends on the chosen sampling strategy. The MISO algorithm that combines a coordinate perturbation search with a target value strategy and a local search performs best among all algorithms.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Supplementary material 1 (PDF 96 kb)
11081_2015_9281_MOESM1_ESM.pdf
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2016

Optimization and Engineering 1/2016 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise