Skip to main content
Erschienen in: Wireless Networks 4/2020

02.01.2020

Mitigation of mutual interference in IEEE 802.15.4-based wireless body sensor networks deployed in e-health monitoring systems

verfasst von: Amir Hossein Moravejosharieh, Jaime Lloret

Erschienen in: Wireless Networks | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the main issues experienced in wireless body sensor networks (WBSNs) is the destructive impacts of “mutual interference” caused by neighboring WBSNs on each other’s performance. Research communities have proposed several approaches to mitigate the impacts of mutual interference on the reliability of data transmission and sensor’s energy consumption. However, the proposed approaches came with a number of limitations, such as significant modification of the standard protocol or imposing a high level of complexity. In this paper, a range of schemes are proposed, and their performances are evaluated in the presence of mutual interference experienced in a dynamic environment. More specifically, we consider a situation where a large number of people (each individual covered with a number of sensors to fetch the human vital sign) are gathered at a sport centre to enjoy an event. In such a dynamic environment, people would highly likely experience mutual interference which would destructively impact on WBSN’s performances and eventually would result in an unreliable medical outcome. A simulation study is conducted in which a set of schemes proposed that indicates a gradual improvement of WBSN’s performances in terms of reliability of data transmission and sensor’s energy consumption. Our obtained results show that the frequency-adaptation strategy combined with phase-adaptation approach significantly improves the performance of WBSNs in the presence of mutual interference in a dynamic environment. Moreover, an experimental study is carried out to examine the feasibility of implementing the predominant scheme on real-world sensor devices and to further support the outcome of the simulation study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bravos. G., & Kanatas, A. G. (2005). Energy consumption and trade-offs on wireless sensor networks. In IEEE 16th international Symposium on personal, indoor and mobile radio communications (Pimrc) (Vol. 2, pp. 1279–1283). Bravos. G., & Kanatas, A. G. (2005). Energy consumption and trade-offs on wireless sensor networks. In IEEE 16th international Symposium on personal, indoor and mobile radio communications (Pimrc) (Vol. 2, pp. 1279–1283).
7.
Zurück zum Zitat Karalis, A., Zorbas, D., & Douligeris, C. (2018). Collision-free broadcast methods for IEEE 802.15.4-TSCH networks formation. In Proceedings of the 21st ACM international conference on modeling, analysis and simulation of wireless and mobile systems, MSWIM ’18, New York, NY, USA, 2018 (pp. 91–98). ACM. ISBN 978-1-4503-5960-3. https://doi.org/10.1145/3242102.3242108. Karalis, A., Zorbas, D., & Douligeris, C. (2018). Collision-free broadcast methods for IEEE 802.15.4-TSCH networks formation. In Proceedings of the 21st ACM international conference on modeling, analysis and simulation of wireless and mobile systems, MSWIM ’18, New York, NY, USA, 2018 (pp. 91–98). ACM. ISBN 978-1-4503-5960-3. https://​doi.​org/​10.​1145/​3242102.​3242108.
9.
Zurück zum Zitat Kim, S., Kim, J.W., & Eom, D.S. (2012). Flexible beacon scheduling scheme for interference mitigation in body sensor networks. In 2012 9th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 157–164). https://doi.org/10.1109/SECON.2012.6275772. Kim, S., Kim, J.W., & Eom, D.S. (2012). Flexible beacon scheduling scheme for interference mitigation in body sensor networks. In 2012 9th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 157–164). https://​doi.​org/​10.​1109/​SECON.​2012.​6275772.
11.
Zurück zum Zitat Koubaa, A., Cunha, A., & Alves, M. (2007). A time division beacon scheduling mechanism for IEEE 802.15.4/zigbee cluster-tree wireless sensor networks. In 19th Euromicro conference on real-time systems (ECRTS’07) (pp. 125–135). https://doi.org/10.1109/ECRTS.2007.82. Koubaa, A., Cunha, A., & Alves, M. (2007). A time division beacon scheduling mechanism for IEEE 802.15.4/zigbee cluster-tree wireless sensor networks. In 19th Euromicro conference on real-time systems (ECRTS’07) (pp. 125–135). https://​doi.​org/​10.​1109/​ECRTS.​2007.​82.
14.
Zurück zum Zitat Moravejosharieh, A., & Willig, A. (2015). Frequency-adaptive approach in IEEE 802.15.4 wireless body sensor networks: Continuous-assessment or periodic-assessment? International Journal of Information, Communication Technology and Applications, 1(1), 19–34. https://doi.org/10.17972/ajicta2015113. ISSN 2205-0930.CrossRef Moravejosharieh, A., & Willig, A. (2015). Frequency-adaptive approach in IEEE 802.15.4 wireless body sensor networks: Continuous-assessment or periodic-assessment? International Journal of Information, Communication Technology and Applications, 1(1), 19–34. https://​doi.​org/​10.​17972/​ajicta2015113. ISSN 2205-0930.CrossRef
15.
Zurück zum Zitat Moravejosharieh, A., & Yazdi, E. T. (2013). Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part I: The need for enhancement. In 2013 IEEE 16th international conference on computational science and engineering (pp. 1226–1231). https://doi.org/10.1109/CSE.2013.182. Moravejosharieh, A., & Yazdi, E. T. (2013). Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part I: The need for enhancement. In 2013 IEEE 16th international conference on computational science and engineering (pp. 1226–1231). https://​doi.​org/​10.​1109/​CSE.​2013.​182.
16.
Zurück zum Zitat Moravejosharieh, A., Tabatabaei Yazdi, E., & Willig, A. (2013). Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part II: Greedy channel utilization. In 2013 19th IEEE international conference on networks (ICON) (pp. 1–6). https://doi.org/10.1109/ICON.2013.6781976. Moravejosharieh, A., Tabatabaei Yazdi, E., & Willig, A. (2013). Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part II: Greedy channel utilization. In 2013 19th IEEE international conference on networks (ICON) (pp. 1–6). https://​doi.​org/​10.​1109/​ICON.​2013.​6781976.
17.
Zurück zum Zitat Moravejosharieh, A., Yazdi, E. T., Willig, A., & Pawlikowski, K. (2014). Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: Continuous hopping approach. In 2014 Australasian telecommunication networks and applications conference (ATNAC) (pp. 93–98). https://doi.org/10.1109/ATNAC.2014.7020880. Moravejosharieh, A., Yazdi, E. T., Willig, A., & Pawlikowski, K. (2014). Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: Continuous hopping approach. In 2014 Australasian telecommunication networks and applications conference (ATNAC) (pp. 93–98). https://​doi.​org/​10.​1109/​ATNAC.​2014.​7020880.
18.
Zurück zum Zitat Moravejosharieh, A., Tabatabaei Yazdi, E., Pawlikowski, K., & Sirisena, H. (2015) Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: Adaptive phase-shifting approach. In 2015 international telecommunication networks and applications conference (ITNAC) (pp. 94–99). https://doi.org/10.1109/ATNAC.2015.7366795. Moravejosharieh, A., Tabatabaei Yazdi, E., Pawlikowski, K., & Sirisena, H. (2015) Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: Adaptive phase-shifting approach. In 2015 international telecommunication networks and applications conference (ITNAC) (pp. 94–99). https://​doi.​org/​10.​1109/​ATNAC.​2015.​7366795.
19.
Zurück zum Zitat Moravejosharieh, A. H. (2017). Performance evaluation of IEEE 802.15. 4-based wireless body sensor networks: An experimental study. International Journal of Information, Communication Technology and Applications, 3(1), 15–27.CrossRef Moravejosharieh, A. H. (2017). Performance evaluation of IEEE 802.15. 4-based wireless body sensor networks: An experimental study. International Journal of Information, Communication Technology and Applications, 3(1), 15–27.CrossRef
20.
Zurück zum Zitat Moravejosharieh, A., & Ahmadi, K. (2017). Experimental evaluation of mutual interference in co-located IEEE 802.15. 4-based wireless body sensor networks. In 27th international telecommunication networks and applications conference (ITNAC), 2017 (pp. 1–6). IEEE Moravejosharieh, A., & Ahmadi, K. (2017). Experimental evaluation of mutual interference in co-located IEEE 802.15. 4-based wireless body sensor networks. In 27th international telecommunication networks and applications conference (ITNAC), 2017 (pp. 1–6). IEEE
21.
Zurück zum Zitat Moravejosharieh, A., & Lloret, J. (2016a). Performance evaluation of co-located IEEE 802.15. 4-based wireless body sensor networks. Annals of Telecommunications, 71(9–10), 425–440.CrossRef Moravejosharieh, A., & Lloret, J. (2016a). Performance evaluation of co-located IEEE 802.15. 4-based wireless body sensor networks. Annals of Telecommunications, 71(9–10), 425–440.CrossRef
22.
Zurück zum Zitat Moravejosharieh, A., & Lloret, J. (2016b). A survey of IEEE 802.15. 4 effective system parameters for wireless body sensor networks. International Journal of Communication Systems, 29(7), 1269–1292.CrossRef Moravejosharieh, A., & Lloret, J. (2016b). A survey of IEEE 802.15. 4 effective system parameters for wireless body sensor networks. International Journal of Communication Systems, 29(7), 1269–1292.CrossRef
23.
Zurück zum Zitat Pediaditakis, D., Tselishchev, Y., & Boulis, A. (2010) Performance and scalability evaluation of the castalia wireless sensor network simulator. In Proceedings of the 3rd international ICST conference on simulation tools and techniques, SIMUTools ’10, Belgium, 2010 (pp. 53:1–53:6). Brussels: ICST. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). ISBN 978-963-9799-87-5. https://doi.org/10.4108/ICST.SIMUTOOLS2010.8727. Pediaditakis, D., Tselishchev, Y., & Boulis, A. (2010) Performance and scalability evaluation of the castalia wireless sensor network simulator. In Proceedings of the 3rd international ICST conference on simulation tools and techniques, SIMUTools ’10, Belgium, 2010 (pp. 53:1–53:6). Brussels: ICST. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). ISBN 978-963-9799-87-5. https://​doi.​org/​10.​4108/​ICST.​SIMUTOOLS2010.​8727.
25.
Zurück zum Zitat Poe, Y., & Schmitt, B. (2009). Node deployment in large wireless sensor networks: Coverage, energy consumption, and worst-case delay. ACM Asian internet engineering conference, Aintec ’09 (pp. 77–84). New York, NY. Poe, Y., & Schmitt, B. (2009). Node deployment in large wireless sensor networks: Coverage, energy consumption, and worst-case delay. ACM Asian internet engineering conference, Aintec ’09 (pp. 77–84). New York, NY.
Metadaten
Titel
Mitigation of mutual interference in IEEE 802.15.4-based wireless body sensor networks deployed in e-health monitoring systems
verfasst von
Amir Hossein Moravejosharieh
Jaime Lloret
Publikationsdatum
02.01.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02211-3

Weitere Artikel der Ausgabe 4/2020

Wireless Networks 4/2020 Zur Ausgabe

Neuer Inhalt