Skip to main content

2023 | OriginalPaper | Buchkapitel

Mobility and Trust in Algorithms: Attitude of Consumers towards Algorithmic Decision-making Systems in the Mobility Sector

verfasst von : Jessica Römer, Zunera Rana, Jörn Sickmann, Thomas Pitz, Carina Goldbach

Erschienen in: Towards the New Normal in Mobility

Verlag: Springer Fachmedien Wiesbaden

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Algorithmic decision-making systems are becoming increasingly prominent in the mobility sector through navigation systems, autonomous driving vehicles, infrastructure management and even through their implementation in customer services. However, the advancements in mobility will only be successful if they are accepted and adopted by the majority of the public. In this paper, we test the perception of public towards algorithmic decision-making systems and their willingness to delegate the task within the mobility sector using a factorial survey approach. Unlike the standard one-factor-at-a-time survey analysis, factorial survey gives us an opportunity to test the perception of trust through various dimensions including personality, task and algorithm related factors, spread over different levels. For example, each participant is given a series of scenarios consisting of a combination of dimensions; with every new scenario in the series, the levels of the dimensions are changed. This allows us to reduce internal biases of the participants by affiliating them to the scenario and thus increasing the internal and external validity of our results. Our results indicate that consumers are less algorithm averse when they have more information about the algorithm (increased transparency), when they have some control over the algorithm, when the algorithm has higher accuracy in performing the task and when it is characterized by the ability to learn. Our findings could act as a starting point for a discussion on ways in which consumer trust in algorithmic decision-making systems can be improved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
2
The data from the responses of the participants was scaled from 0–100 to 0–5 using R software. This was done to reduce the spread of the data points and had no impact on the significance levels and signs of the coefficients.
 
Literatur
Zurück zum Zitat Atzmüller, C., & Steiner, P. M. (2010). Experimental vignette studies in survey research. Methodology, 6(3), 128–138.CrossRef Atzmüller, C., & Steiner, P. M. (2010). Experimental vignette studies in survey research. Methodology, 6(3), 128–138.CrossRef
Zurück zum Zitat Auspurg, K., & Hinz, T. (2015). Why and when to use factorial survey methods. Factorial survey experiments (pp. 4–15). SAGE.CrossRef Auspurg, K., & Hinz, T. (2015). Why and when to use factorial survey methods. Factorial survey experiments (pp. 4–15). SAGE.CrossRef
Zurück zum Zitat Berger, B., Adam, M., Rühr, A., & Benlian, A. (2021). Watch me improve—algorithm aversion and demonstrating the ability to learn. Business & Information Systems Engineering, 63(1), 55–68. Berger, B., Adam, M., Rühr, A., & Benlian, A. (2021). Watch me improve—algorithm aversion and demonstrating the ability to learn. Business & Information Systems Engineering, 63(1), 55–68.
Zurück zum Zitat Bigman, Y. E., & Gray, K. (2018). People are averse to machines making moral decisions. Cognition, 181, 21–34.CrossRef Bigman, Y. E., & Gray, K. (2018). People are averse to machines making moral decisions. Cognition, 181, 21–34.CrossRef
Zurück zum Zitat Bogert, E., Schecter, A., & Watson, R. T. (2021). Humans rely more on algorithms than social influence as a task becomes more difficult. Scientific Reports, 11(1), 8028.CrossRef Bogert, E., Schecter, A., & Watson, R. T. (2021). Humans rely more on algorithms than social influence as a task becomes more difficult. Scientific Reports, 11(1), 8028.CrossRef
Zurück zum Zitat Castelo, N., Bos, M. W., & Lehmann, D. (2019). Task-dependent algorithm aversion. Journal of MArketing Research, 144(1), 114–126. Castelo, N., Bos, M. W., & Lehmann, D. (2019). Task-dependent algorithm aversion. Journal of MArketing Research, 144(1), 114–126.
Zurück zum Zitat Chander, A. et al. (2018). Working with beliefs: AI transparency in the enterprise. IUI Workshop. Chander, A. et al. (2018). Working with beliefs: AI transparency in the enterprise. IUI Workshop.
Zurück zum Zitat Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology. General, 144(1), 114–126.CrossRef Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology. General, 144(1), 114–126.CrossRef
Zurück zum Zitat Dietvorst, B. J., Simmons, J. P., & Massey, C. (2018). Overcoming algorithm aversion: People will use imperfect algorithms if they can (Even Slightly) modify them. Management Science, 64(3), 1155–1170.CrossRef Dietvorst, B. J., Simmons, J. P., & Massey, C. (2018). Overcoming algorithm aversion: People will use imperfect algorithms if they can (Even Slightly) modify them. Management Science, 64(3), 1155–1170.CrossRef
Zurück zum Zitat Dong, X., DiScenna, M., & Guerra, E. (2019). Transit user perceptions of driverless buses. Transportation, 46(1), 35–50.CrossRef Dong, X., DiScenna, M., & Guerra, E. (2019). Transit user perceptions of driverless buses. Transportation, 46(1), 35–50.CrossRef
Zurück zum Zitat Feng, X., & Gao, J. (2020). Is optimal recommendation the best? A laboratory investigation under the newsvendor problem. Decision Support Systems, 131, 113251.CrossRef Feng, X., & Gao, J. (2020). Is optimal recommendation the best? A laboratory investigation under the newsvendor problem. Decision Support Systems, 131, 113251.CrossRef
Zurück zum Zitat Fenneman, A., Sickmann, J., Pitz, T., & Sanfey, A. G. (2021). Two distinct and separable processes underlie individual differences in algorithm adherence: Differences in predictions and differences in trust thresholds. PLoS ONE, 16(2), e0247084.CrossRef Fenneman, A., Sickmann, J., Pitz, T., & Sanfey, A. G. (2021). Two distinct and separable processes underlie individual differences in algorithm adherence: Differences in predictions and differences in trust thresholds. PLoS ONE, 16(2), e0247084.CrossRef
Zurück zum Zitat Filiz, I., Judek, J. R., Lorenz, M. & Spiwoks, M. (2021). Reducing algorithm aversion through experience✩. Journal of Behavioral and Experimental Finance, 31. Filiz, I., Judek, J. R., Lorenz, M. & Spiwoks, M. (2021). Reducing algorithm aversion through experience✩. Journal of Behavioral and Experimental Finance, 31.
Zurück zum Zitat Goodwin, P., Gönül, M. S., & Önkal, D. (2013). Antecedents and effects of trust in forecasting advice. International Journal of Forecasting, 29(2), 354–366. S0169207012001124, 10.1016/j.ijforecast.2012.08.001 Goodwin, P., Gönül, M. S., & Önkal, D. (2013). Antecedents and effects of trust in forecasting advice. International Journal of Forecasting, 29(2), 354–366. S0169207012001124, 10.​1016/​j.​ijforecast.​2012.​08.​001
Zurück zum Zitat Goldbach, C., Kayar, D., Pitz, T., & Sickmann, J. (2019). Transferring decisions to an algorithm: A simple route choice experiment. Transportation Research Part F: Traffic Psychology and Behaviour, 65, 402–417.CrossRef Goldbach, C., Kayar, D., Pitz, T., & Sickmann, J. (2019). Transferring decisions to an algorithm: A simple route choice experiment. Transportation Research Part F: Traffic Psychology and Behaviour, 65, 402–417.CrossRef
Zurück zum Zitat Goldbach, C., Sickmann, J., Pitz, T., & Zimasa, T. (2022). Towards autonomous public transportation: Attitudes and intentions of the local population. Transportation Research Interdisciplinary Perspectives, 13(6), 100504.CrossRef Goldbach, C., Sickmann, J., Pitz, T., & Zimasa, T. (2022). Towards autonomous public transportation: Attitudes and intentions of the local population. Transportation Research Interdisciplinary Perspectives, 13(6), 100504.CrossRef
Zurück zum Zitat Hauser, D., Moss, A. J., Rosenzweig, C., Jaffe, S. N., Robinson, J., & Litman, L. (2021). Evaluating CloudResearch’s Approved Group as a Solution for Problematic Data Quality on MTurk. Hauser, D., Moss, A. J., Rosenzweig, C., Jaffe, S. N., Robinson, J., & Litman, L. (2021). Evaluating CloudResearch’s Approved Group as a Solution for Problematic Data Quality on MTurk.
Zurück zum Zitat Hengstler, M., Enkel, E., & Duelli, S. (2016). Applied artificial intelligence and trust—The case of autonomous vehicles and medical assistance devices. Technological Forecasting & Social Change, 105, 105–120.CrossRef Hengstler, M., Enkel, E., & Duelli, S. (2016). Applied artificial intelligence and trust—The case of autonomous vehicles and medical assistance devices. Technological Forecasting & Social Change, 105, 105–120.CrossRef
Zurück zum Zitat Hung, S.-Y., Ku, Y.-C., Liang, T.-P., & Lee, C.-J. (2007). Regret avoidance as a measure of DSS success: An exploratory study. Decision Support Systems, 42(4), 2093–2106.CrossRef Hung, S.-Y., Ku, Y.-C., Liang, T.-P., & Lee, C.-J. (2007). Regret avoidance as a measure of DSS success: An exploratory study. Decision Support Systems, 42(4), 2093–2106.CrossRef
Zurück zum Zitat Ireland, L. (2020). Who errs? Algorithm aversion, the source of judicial error, and public support for self-help behaviors. Journal of Crime and Justice, 43(2), 174–192.CrossRef Ireland, L. (2020). Who errs? Algorithm aversion, the source of judicial error, and public support for self-help behaviors. Journal of Crime and Justice, 43(2), 174–192.CrossRef
Zurück zum Zitat Kaufmann, E. (2021). Algorithm appreciation or aversion? Comparing in-service and pre-service teachers’ acceptance of computerized expert models. Computers and Education: Artificial Intelligence (Vol. 2). Kaufmann, E. (2021). Algorithm appreciation or aversion? Comparing in-service and pre-service teachers’ acceptance of computerized expert models. Computers and Education: Artificial Intelligence (Vol. 2).
Zurück zum Zitat Kawaguchi, K. (2021). When will workers follow an algorithm? A field experiment with a retail business. Management Science, 67(3), 1670–1695.CrossRef Kawaguchi, K. (2021). When will workers follow an algorithm? A field experiment with a retail business. Management Science, 67(3), 1670–1695.CrossRef
Zurück zum Zitat Kayande, U., de Bruyn, A., Lilien, G. L., Rangaswamy, A., & van Bruggen, G. H. (2009). How incorporating feedback mechanisms in a DSS affects DSS evaluations. Information Systems Research, 20(4), 527–546.CrossRef Kayande, U., de Bruyn, A., Lilien, G. L., Rangaswamy, A., & van Bruggen, G. H. (2009). How incorporating feedback mechanisms in a DSS affects DSS evaluations. Information Systems Research, 20(4), 527–546.CrossRef
Zurück zum Zitat Keding, C., & Meissner, P. (2021). Managerial overreliance on AI-augmented decision-making processes: How the use of AI-based advisory systems shapes choice behavior in R&D investment decisions. Technological Forecasting and Social Change (Vol. 171). Keding, C., & Meissner, P. (2021). Managerial overreliance on AI-augmented decision-making processes: How the use of AI-based advisory systems shapes choice behavior in R&D investment decisions. Technological Forecasting and Social Change (Vol. 171).
Zurück zum Zitat Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5(1), 205395171875668.CrossRef Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5(1), 205395171875668.CrossRef
Zurück zum Zitat Li, Z., Rau, P.-L.P., & Huang, D. (2020). Who should provide clothing recommendation services. Journal of Information Technology Research, 13(3), 113–125.CrossRef Li, Z., Rau, P.-L.P., & Huang, D. (2020). Who should provide clothing recommendation services. Journal of Information Technology Research, 13(3), 113–125.CrossRef
Zurück zum Zitat Litman, L., Robinson, J., & Abberbock, T. (2017). Turkprime.Com: A versatile crowdsourcing data acquisition platform for the behavioral sciences. Behavior Research Methods, 49(2), 433–442. Litman, L., Robinson, J., & Abberbock, T. (2017). Turkprime.Com: A versatile crowdsourcing data acquisition platform for the behavioral sciences. Behavior Research Methods, 49(2), 433–442.
Zurück zum Zitat Litterscheidt, R., & Streich, D. J. (2020). Financial education and digital asset management: What’s in the black box? Journal of Behavioral and Experimental Economics, 87(1), 101573.CrossRef Litterscheidt, R., & Streich, D. J. (2020). Financial education and digital asset management: What’s in the black box? Journal of Behavioral and Experimental Economics, 87(1), 101573.CrossRef
Zurück zum Zitat Mahmud, H., Islam, A. N., Ahmed, S. I., & Smolander, K. (2022). What influences algorithmic decision-making? A systematic literature review on algorithm aversion. Technological Forecasting & Social Change, 175(1), 121390.CrossRef Mahmud, H., Islam, A. N., Ahmed, S. I., & Smolander, K. (2022). What influences algorithmic decision-making? A systematic literature review on algorithm aversion. Technological Forecasting & Social Change, 175(1), 121390.CrossRef
Zurück zum Zitat Dzindolet, M. T., Pierce, L. G., Beck, H. P., & Dawe, L. A. (2002). The perceived utility of human and automated aids in a visual detection task. Human Factors, 44(1), 79–94.CrossRef Dzindolet, M. T., Pierce, L. G., Beck, H. P., & Dawe, L. A. (2002). The perceived utility of human and automated aids in a visual detection task. Human Factors, 44(1), 79–94.CrossRef
Zurück zum Zitat Önkal, D., et al. (2009). The relative influence of advice from human experts and statistical methods on forecast adjustments. Journal of Behavioral Decision Making, 22, 390–409.CrossRef Önkal, D., et al. (2009). The relative influence of advice from human experts and statistical methods on forecast adjustments. Journal of Behavioral Decision Making, 22, 390–409.CrossRef
Zurück zum Zitat Pak, R., Fink, N., Price, M., Bass, B., & Sturre, L. (2012). Decision support aids with anthropomorphic characteristics influence trust and performance in younger and older adults. Ergonomics, 55(9). Pak, R., Fink, N., Price, M., Bass, B., & Sturre, L. (2012). Decision support aids with anthropomorphic characteristics influence trust and performance in younger and older adults. Ergonomics, 55(9).
Zurück zum Zitat Pallathadka, H., et al. (2022). Investigating the impact of artificial intelligence in education sector by predicting student performance. Materials Today Proceedings, 51(8), 2264–2267.CrossRef Pallathadka, H., et al. (2022). Investigating the impact of artificial intelligence in education sector by predicting student performance. Materials Today Proceedings, 51(8), 2264–2267.CrossRef
Zurück zum Zitat Peer, E., Rothschild, D., Gordon, A., Evernden, Z., & Damer, E. (2022). Data quality of platforms and panels for online behavioral research. Behavior Research Methods, 54(4), 1643–1662. 10.3758/s13428-021-01694-3 Peer, E., Rothschild, D., Gordon, A., Evernden, Z., & Damer, E. (2022). Data quality of platforms and panels for online behavioral research. Behavior Research Methods, 54(4), 1643–1662. 10.​3758/​s13428-021-01694-3
Zurück zum Zitat Prahl, A., & Swol, L. V. (2021). Out with the humans, in with the Machines?: Investigating the behavioral and psychological effects of replacing human advisors with a machine. Human-Machine Communication, 2, 209–234.CrossRef Prahl, A., & Swol, L. V. (2021). Out with the humans, in with the Machines?: Investigating the behavioral and psychological effects of replacing human advisors with a machine. Human-Machine Communication, 2, 209–234.CrossRef
Zurück zum Zitat Promberger, M., & Baron, J. (2006). Do Patients Trust Computers? Journal of Behavioral Decision Making, 19, 455–468.CrossRef Promberger, M., & Baron, J. (2006). Do Patients Trust Computers? Journal of Behavioral Decision Making, 19, 455–468.CrossRef
Zurück zum Zitat Renier, L. A., Schmid Mast, M., & Bekbergenova, A. (2021). To err is human, not algorithmic—Robust reactions to erring algorithms. Computers in Human Behavior, 124(February), 106879.CrossRef Renier, L. A., Schmid Mast, M., & Bekbergenova, A. (2021). To err is human, not algorithmic—Robust reactions to erring algorithms. Computers in Human Behavior, 124(February), 106879.CrossRef
Zurück zum Zitat Sauer, C., Auspurg, K., & Hinz, T. (2020). Designing Multi-Factorial Survey Experiments: Effects of Presentation Style (Text or Table), Answering Scales, and Vignette Order. Methods, Data, Analyses, 14(2), 195–214. Sauer, C., Auspurg, K., & Hinz, T. (2020). Designing Multi-Factorial Survey Experiments: Effects of Presentation Style (Text or Table), Answering Scales, and Vignette Order. Methods, Data, Analyses, 14(2), 195–214.
Zurück zum Zitat Schoettle, B. (2014). A survey of public opinion about autonomous and selfdriving vehicles in the US, UK and Australia. Transportation Research Institute. Schoettle, B. (2014). A survey of public opinion about autonomous and selfdriving vehicles in the US, UK and Australia. Transportation Research Institute.
Zurück zum Zitat Shaffer, V. A., et al. (2013). Why do patients derogate physicians who use a computer-based diagnostic support system? Medical Decision Making, 33(1), 108–118. Shaffer, V. A., et al. (2013). Why do patients derogate physicians who use a computer-based diagnostic support system? Medical Decision Making, 33(1), 108–118.
Zurück zum Zitat Smith, A. (2018). Public attitude towards computer algorithms. Pew Research Center. Smith, A. (2018). Public attitude towards computer algorithms. Pew Research Center.
Zurück zum Zitat Stein, J. P., Appel, M., Jost, A., & Ohler, P. (2020). Matter over mind? How the acceptance of digital entities depends on their appearance, mental prowess, and the interaction between both. International Journal of Human-Computer Studies, 142, 102463. S1071581920300653, 10.1016/j.ijhcs.2020.102463. Stein, J. P., Appel, M., Jost, A., & Ohler, P. (2020). Matter over mind? How the acceptance of digital entities depends on their appearance, mental prowess, and the interaction between both. International Journal of Human-Computer Studies, 142, 102463. S1071581920300653, 10.​1016/​j.​ijhcs.​2020.​102463.
Zurück zum Zitat Whitecotton, S. M. (1996). The effects of experience and a decision aid on the slope, scatter, and bias of earnings forecasts. Organizational Behavior and Human Decision Processes, 66(1), 111–121.CrossRef Whitecotton, S. M. (1996). The effects of experience and a decision aid on the slope, scatter, and bias of earnings forecasts. Organizational Behavior and Human Decision Processes, 66(1), 111–121.CrossRef
Zurück zum Zitat Yun, J. H., Lee, E. J., & Kim, D. H. (2021). Behavioral and neural evidence on consumer responses to human doctors and medical artificial intelligence. Psychology & Marketing, 38(4), 610–625. 10.1002/mar.21445 Yun, J. H., Lee, E. J., & Kim, D. H. (2021). Behavioral and neural evidence on consumer responses to human doctors and medical artificial intelligence. Psychology & Marketing, 38(4), 610–625. 10.​1002/​mar.​21445
Zurück zum Zitat Zhang, L., Pentina, I., & Fan, Y. (2021). Who do you choose? Comparing perceptions of human vs robo-advisor in the context of financial services. Journal of Services Marketing, 35(5), 634–646.CrossRef Zhang, L., Pentina, I., & Fan, Y. (2021). Who do you choose? Comparing perceptions of human vs robo-advisor in the context of financial services. Journal of Services Marketing, 35(5), 634–646.CrossRef
Metadaten
Titel
Mobility and Trust in Algorithms: Attitude of Consumers towards Algorithmic Decision-making Systems in the Mobility Sector
verfasst von
Jessica Römer
Zunera Rana
Jörn Sickmann
Thomas Pitz
Carina Goldbach
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-658-39438-7_33

Premium Partner