Skip to main content

2018 | OriginalPaper | Buchkapitel

Model Based on Support Vector Machine for the Estimation of the Heart Rate Variability

verfasst von : Catalina Maria Hernández-Ruiz, Sergio Andrés Villagrán Martínez, Johan Enrique Ortiz Guzmán, Paulo Alonso Gaona Garcia

Erschienen in: Artificial Neural Networks and Machine Learning – ICANN 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper shows the design, implementation and analysis of a Machine Learning (ML) model for the estimation of Heart Rate Variability (HRV). Through the integration of devices and technologies of the Internet of Things, a support tool is proposed for people in health and sports areas who need to know an individual’s HRV. The cardiac signals of the subjects were captured through pectoral bands, later they were classified by a Support Vector Machine algorithm that determined if the HRV is depressed or increased. The proposed solution has an efficiency of 90.3% and it’s the initial component for the development of an application oriented to physical training that suggests exercise routines based on the HRV of the individual.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pitale, R., Tajane, K., Umale, J.: Heart rate variability classification and feature extraction using support vector machine and PCA: an overview. J. Eng. Res. Appl. 4, 381–384 (2014) Pitale, R., Tajane, K., Umale, J.: Heart rate variability classification and feature extraction using support vector machine and PCA: an overview. J. Eng. Res. Appl. 4, 381–384 (2014)
2.
Zurück zum Zitat Borchini, R., Veronesi, G., Bonzini, M., Gianfagna, F., Dashi, O., Ferrario, M.: Heart rate variability frequency domain alterations among healthy nurses exposed to prolonged work stress. Int. J. Environ. Res. Public Health 15, 113 (2018)CrossRef Borchini, R., Veronesi, G., Bonzini, M., Gianfagna, F., Dashi, O., Ferrario, M.: Heart rate variability frequency domain alterations among healthy nurses exposed to prolonged work stress. Int. J. Environ. Res. Public Health 15, 113 (2018)CrossRef
4.
Zurück zum Zitat Giles, D., Draper, N., Neil, W.: Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur. J. Appl. Physiol. 116, 563–571 (2015)CrossRef Giles, D., Draper, N., Neil, W.: Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur. J. Appl. Physiol. 116, 563–571 (2015)CrossRef
5.
Zurück zum Zitat Erkkila, M., Rae, R., Thurlin, T., Korva, T., Manninen, T.: Managing physiological exercise data. US Patent 9855463B2, 16 January 2014 Erkkila, M., Rae, R., Thurlin, T., Korva, T., Manninen, T.: Managing physiological exercise data. US Patent 9855463B2, 16 January 2014
6.
Zurück zum Zitat McCraty, R., Shaffer, F.: Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob. Adv. Health Med. Improv. Healthc. Outcomes Worldw. 4, 46–61 (2015)CrossRef McCraty, R., Shaffer, F.: Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob. Adv. Health Med. Improv. Healthc. Outcomes Worldw. 4, 46–61 (2015)CrossRef
7.
Zurück zum Zitat Song, M., Lee, J., Cho, S., Lee, K., Yoo, S.: Support vector machine based arrhythmia classification using reduced features. Int. J. Control Autom. Syst. 3, 571–579 (2005) Song, M., Lee, J., Cho, S., Lee, K., Yoo, S.: Support vector machine based arrhythmia classification using reduced features. Int. J. Control Autom. Syst. 3, 571–579 (2005)
8.
Zurück zum Zitat Matta, S., Sankari, Z., Rihana, S.: Heart rate variability analysis using neural network models for automatic detection of lifestyle activities. Biomed. Signal Process. Control 42, 145–157 (2018)CrossRef Matta, S., Sankari, Z., Rihana, S.: Heart rate variability analysis using neural network models for automatic detection of lifestyle activities. Biomed. Signal Process. Control 42, 145–157 (2018)CrossRef
9.
Zurück zum Zitat Lewis, M.C., Maiya, M., Sampathila, N.: A novel method for the conversion of scanned electrocardiogram (ECG) image to digital signal. In: Dash, S.S., Das, S., Panigrahi, B.K. (eds.) International Conference on Intelligent Computing and Applications. AISC, vol. 632, pp. 363–373. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5520-1_34CrossRef Lewis, M.C., Maiya, M., Sampathila, N.: A novel method for the conversion of scanned electrocardiogram (ECG) image to digital signal. In: Dash, S.S., Das, S., Panigrahi, B.K. (eds.) International Conference on Intelligent Computing and Applications. AISC, vol. 632, pp. 363–373. Springer, Singapore (2018). https://​doi.​org/​10.​1007/​978-981-10-5520-1_​34CrossRef
10.
Zurück zum Zitat Barrett, K., Brooks, H., Boitano, S., Barman, S.: Ganong’s Review of Medical Physiology, 23rd edn. McGraw Hill Education, New York (2016) Barrett, K., Brooks, H., Boitano, S., Barman, S.: Ganong’s Review of Medical Physiology, 23rd edn. McGraw Hill Education, New York (2016)
11.
Zurück zum Zitat Karim, N., Hasan, J., Ali, S.: Heart rate variability - a review. J. Basic Appl. Sci. 7, 71–77 (2011) Karim, N., Hasan, J., Ali, S.: Heart rate variability - a review. J. Basic Appl. Sci. 7, 71–77 (2011)
12.
Zurück zum Zitat Sao, P., Hegadi, R., Karmakar, S.: ECG signal analysis using artificial neural network. Int. J. Sci. Res. (IJSR), 82–86 (2015) Sao, P., Hegadi, R., Karmakar, S.: ECG signal analysis using artificial neural network. Int. J. Sci. Res. (IJSR), 82–86 (2015)
13.
Zurück zum Zitat Patel, M., Lal, S.K.L., Kavanagh, D., Rossiter, P.: Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert. Syst. Appl. Int. J. 38, 7235–7242 (2011)CrossRef Patel, M., Lal, S.K.L., Kavanagh, D., Rossiter, P.: Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert. Syst. Appl. Int. J. 38, 7235–7242 (2011)CrossRef
14.
Zurück zum Zitat Asl, B., Setarehdan, S., Mohebbi, M.: Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif. Intell. Med. 44, 51–64 (2008)CrossRef Asl, B., Setarehdan, S., Mohebbi, M.: Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif. Intell. Med. 44, 51–64 (2008)CrossRef
15.
Zurück zum Zitat Liu, N., Holcomb, J., Wade, C., Darrah, M., Salinas, J.: Utility of vital signs, Heart rate variability and complexity, and machine learning for identifying the need for lifesaving interventions in trauma patients. Shock (Augusta, GA) 42, 108–114 (2014)CrossRef Liu, N., Holcomb, J., Wade, C., Darrah, M., Salinas, J.: Utility of vital signs, Heart rate variability and complexity, and machine learning for identifying the need for lifesaving interventions in trauma patients. Shock (Augusta, GA) 42, 108–114 (2014)CrossRef
17.
Zurück zum Zitat Gimeno-Blanes, F.J., Rojo-Álvarez, J.L., Caamaño, A.J., Flores-Yepes, J.A., García-Alberola, A.: On the feasibility of tilt test outcome early prediction using ECG and pressure parameters. EURASIP J. Adv. Signal Process. 33 (2011) Gimeno-Blanes, F.J., Rojo-Álvarez, J.L., Caamaño, A.J., Flores-Yepes, J.A., García-Alberola, A.: On the feasibility of tilt test outcome early prediction using ECG and pressure parameters. EURASIP J. Adv. Signal Process. 33 (2011)
18.
Zurück zum Zitat Mirescu, S., Harden, S.: Nonlinear dynamics methods for assessing heart rate variability in patients with recent myocardial infarction. Rom. J. Biophys. 22, 117–124 (2016) Mirescu, S., Harden, S.: Nonlinear dynamics methods for assessing heart rate variability in patients with recent myocardial infarction. Rom. J. Biophys. 22, 117–124 (2016)
19.
Zurück zum Zitat Mazzuco, A., et al.: Relationship between linear and nonlinear dynamics of heart rate and impairment of lung function in COPD patients. Int. J. Chronic Obstr. Pulm. Dis. 10, 1651–1661 (2015)CrossRef Mazzuco, A., et al.: Relationship between linear and nonlinear dynamics of heart rate and impairment of lung function in COPD patients. Int. J. Chronic Obstr. Pulm. Dis. 10, 1651–1661 (2015)CrossRef
20.
Zurück zum Zitat Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: Heart rate variability: standards of measurement, physiological interpretation and clinical use. Eur. Hear. J. 17, 354–381. (1996) Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: Heart rate variability: standards of measurement, physiological interpretation and clinical use. Eur. Hear. J. 17, 354–381. (1996)
21.
Zurück zum Zitat Zhao, J., Mucaki, E., Rogan, P.: Predicting ionizing radiation exposure using biochemically-inspired genomic machine learning. F1000Research 7, 233 (2018)CrossRef Zhao, J., Mucaki, E., Rogan, P.: Predicting ionizing radiation exposure using biochemically-inspired genomic machine learning. F1000Research 7, 233 (2018)CrossRef
22.
Zurück zum Zitat He, Z.: 4 - Phosphorylation site prediction. In: Data Mining for Bioinformatics Applications, pp. 29–37 (2015)CrossRef He, Z.: 4 - Phosphorylation site prediction. In: Data Mining for Bioinformatics Applications, pp. 29–37 (2015)CrossRef
Metadaten
Titel
Model Based on Support Vector Machine for the Estimation of the Heart Rate Variability
verfasst von
Catalina Maria Hernández-Ruiz
Sergio Andrés Villagrán Martínez
Johan Enrique Ortiz Guzmán
Paulo Alonso Gaona Garcia
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-01421-6_19