Skip to main content
Erschienen in: Journal of Computational Electronics 2/2016

06.01.2016

Model for threshold voltage instability in top-gated nanocrystalline silicon thin film transistor

verfasst von: Prachi Sharma, Navneet Gupta

Erschienen in: Journal of Computational Electronics | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The analytical model for the threshold voltage instability in top-gated staggered nanocrystalline silicon thin-film transistor is reported. This novel model includes the effect of various physical parameters like grain size, gate insulator thickness, doping density and grain boundary trapping state on the threshold voltage shift which is never reported earlier. It is observed that the higher trap density, greater doping concentration and larger gate insulator thickness provide lesser threshold voltage shift. Further, it is found from the results of grain size analysis that if grain size is smaller than threshold voltage shift decreases with decrease in grain size. However, if grain size is larger \((\hbox {D}_\mathrm{g} > 20\,\hbox {nm})\) then device become stable and shows negligible threshold voltage shift. In this paper, threshold voltage shift under gate bias voltage is also analyzed and result reveals that threshold voltage increases with the bias voltage. The calculated results are compared with experimental data. The close match between the two confirms the validity of proposed study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Easton, B.C., Chapman, J.A., Hill, O.F., Powell, M.J.: The plasma-enhanced deposition of hydrogenated amorphous silicon. Vacuum 34, 371–376 (1984)CrossRef Easton, B.C., Chapman, J.A., Hill, O.F., Powell, M.J.: The plasma-enhanced deposition of hydrogenated amorphous silicon. Vacuum 34, 371–376 (1984)CrossRef
2.
Zurück zum Zitat Kuo, Y.: Thin Film Transistors: Materials and Process, vol. 2, 1st edn. Kluwer Academic, New York (2004)CrossRef Kuo, Y.: Thin Film Transistors: Materials and Process, vol. 2, 1st edn. Kluwer Academic, New York (2004)CrossRef
3.
Zurück zum Zitat Shin, K.W.: Fabrication and Analysis of Bottom Gate Nanocrystalline Silicon Thin Film Transistors [PhD Thesis], University of Waterloo, Canada (2008) Shin, K.W.: Fabrication and Analysis of Bottom Gate Nanocrystalline Silicon Thin Film Transistors [PhD Thesis], University of Waterloo, Canada (2008)
4.
Zurück zum Zitat Ferris-Prabhu, V.A.: Charge transfer by direct tunneling in thin-oxide memory transistors. IEEE Trans. Electron Devices 24, 524–530 (1977)CrossRef Ferris-Prabhu, V.A.: Charge transfer by direct tunneling in thin-oxide memory transistors. IEEE Trans. Electron Devices 24, 524–530 (1977)CrossRef
5.
Zurück zum Zitat Fujita, S., Nishihara, M., Hoi, W.L., Sasaki, A.: Deep trap states in \({\rm Si}_{3}{\rm N}_{4}\) layer on Si substrate. Jpn. J. Appl. Phys. 20, 917–923 (1981) Fujita, S., Nishihara, M., Hoi, W.L., Sasaki, A.: Deep trap states in \({\rm Si}_{3}{\rm N}_{4}\) layer on Si substrate. Jpn. J. Appl. Phys. 20, 917–923 (1981)
6.
Zurück zum Zitat Chang, J.J.: Theory of MNOS memory transistor. IEEE Trans. Electron Devices 24, 511–518 (1977)CrossRef Chang, J.J.: Theory of MNOS memory transistor. IEEE Trans. Electron Devices 24, 511–518 (1977)CrossRef
7.
Zurück zum Zitat Lundstrom, K.I., Svensson, C.M.: Properties of MNOS structures. IEEE Trans. Electron Devices 19, 826–836 (1971)CrossRef Lundstrom, K.I., Svensson, C.M.: Properties of MNOS structures. IEEE Trans. Electron Devices 19, 826–836 (1971)CrossRef
8.
Zurück zum Zitat Svensson, C.M., Lundstrom, K.I.: Trap-assisted charge injection in MNOS structures. J. Appl. Phys. 44, 4657–4663 (1973)CrossRef Svensson, C.M., Lundstrom, K.I.: Trap-assisted charge injection in MNOS structures. J. Appl. Phys. 44, 4657–4663 (1973)CrossRef
9.
Zurück zum Zitat Wright, S.W., Anderson, J.C.: Trapping centres in sputtered SiO\(_2\) films. Thin Solid Films 62, 89–96 (1979)CrossRef Wright, S.W., Anderson, J.C.: Trapping centres in sputtered SiO\(_2\) films. Thin Solid Films 62, 89–96 (1979)CrossRef
10.
Zurück zum Zitat Koelmans, H., De Graaff, H.C.: Drift phenomena in CdSe thin film FET’s. Solid State Electron. 10, 997–1000 (1967)CrossRef Koelmans, H., De Graaff, H.C.: Drift phenomena in CdSe thin film FET’s. Solid State Electron. 10, 997–1000 (1967)CrossRef
11.
Zurück zum Zitat Powell, M.J.: Charge trapping instabilities in amorphous silicon silicon nitride thin film transistors. Appl. Phys. Lett. 43, 597–599 (1983)CrossRef Powell, M.J.: Charge trapping instabilities in amorphous silicon silicon nitride thin film transistors. Appl. Phys. Lett. 43, 597–599 (1983)CrossRef
12.
Zurück zum Zitat Esmaeili-Rad, M.R., Sazonov, A., Nathan, A.: Absence of defect state creation in nanocrystalline silicon thin film transistors deduced from constant current stress measurements. Appl. Phys. Lett. 91, 113511-1-3 (2007)CrossRef Esmaeili-Rad, M.R., Sazonov, A., Nathan, A.: Absence of defect state creation in nanocrystalline silicon thin film transistors deduced from constant current stress measurements. Appl. Phys. Lett. 91, 113511-1-3 (2007)CrossRef
13.
Zurück zum Zitat Libsch, F.R., Kanicki, J.: Bias stress induced stretched exponential time dependence of charge injection and trapping in amorphous thin film transistors. Appl. Phys. Lett. 62, 1286–1288 (1993)CrossRef Libsch, F.R., Kanicki, J.: Bias stress induced stretched exponential time dependence of charge injection and trapping in amorphous thin film transistors. Appl. Phys. Lett. 62, 1286–1288 (1993)CrossRef
14.
Zurück zum Zitat Bauza, M., Ahnood, A., Li, F.M., Vygranenko, Y., Esmaeili-Rad, M.R., Chaji, G., Sazonov, A., Robertson, J., Milne, W.I., Nathan, A.: Photo-induced instability of nanocrystalline TFTs. J. Disp. Technol. 6, 589–591 (2010)CrossRef Bauza, M., Ahnood, A., Li, F.M., Vygranenko, Y., Esmaeili-Rad, M.R., Chaji, G., Sazonov, A., Robertson, J., Milne, W.I., Nathan, A.: Photo-induced instability of nanocrystalline TFTs. J. Disp. Technol. 6, 589–591 (2010)CrossRef
15.
Zurück zum Zitat Kim, S.J., Park, S.G., Ji, S.B., Han, M.K.: Effect of drain bias stress on stability of nanocrystalline silicon thin film transistors with various channel lengths. Jpn. J. Appl. Phys. Part 1 49, 04DH121–04DH124 (2010) Kim, S.J., Park, S.G., Ji, S.B., Han, M.K.: Effect of drain bias stress on stability of nanocrystalline silicon thin film transistors with various channel lengths. Jpn. J. Appl. Phys. Part 1 49, 04DH121–04DH124 (2010)
16.
Zurück zum Zitat Streetman, B.G., Banerjee, S.K.: Solid State Electronics Devices, 6th edn, p. 273. Pearson Education, New Jersey (2006) Streetman, B.G., Banerjee, S.K.: Solid State Electronics Devices, 6th edn, p. 273. Pearson Education, New Jersey (2006)
17.
Zurück zum Zitat Wang, L.W., Zunger, A.: Dielectric constants of silicon quantum dots. Phys. Rev. Lett. 73, 1039–1042 (1994)CrossRef Wang, L.W., Zunger, A.: Dielectric constants of silicon quantum dots. Phys. Rev. Lett. 73, 1039–1042 (1994)CrossRef
18.
Zurück zum Zitat Mao, L.F.: Quantum size impacts on the threshold voltage in nanocrystalline silicon thin film transistors. Microelectron. Reliab. 53(12), 1886–1890 (2013)CrossRef Mao, L.F.: Quantum size impacts on the threshold voltage in nanocrystalline silicon thin film transistors. Microelectron. Reliab. 53(12), 1886–1890 (2013)CrossRef
19.
Zurück zum Zitat Lee, C.H., Nathan, A.: Stability of nc-Si: H TFTs with silicon nitride gate dielectric. IEEE Trans. Electron Devices 54, 45–50 (2007)CrossRef Lee, C.H., Nathan, A.: Stability of nc-Si: H TFTs with silicon nitride gate dielectric. IEEE Trans. Electron Devices 54, 45–50 (2007)CrossRef
20.
Zurück zum Zitat Esmaeili-Rad, M.R., Li, F., Sazonov, A., Nathan, A.: Stability of nanocrystalline silicon bottom-gate thin film transistors with silicon nitride gate dielectric. J. Appl. Phys. 102(6), 4512 (2007)CrossRef Esmaeili-Rad, M.R., Li, F., Sazonov, A., Nathan, A.: Stability of nanocrystalline silicon bottom-gate thin film transistors with silicon nitride gate dielectric. J. Appl. Phys. 102(6), 4512 (2007)CrossRef
21.
Zurück zum Zitat Lee, C.H., Striakhilev, D., Tao, S., Nathan, A.: Top-gate TFTs using 13.56 MHz PECVD microcrystalline silicon. IEEE Electron Device Lett. 26(9), 637–639 (2005)CrossRef Lee, C.H., Striakhilev, D., Tao, S., Nathan, A.: Top-gate TFTs using 13.56 MHz PECVD microcrystalline silicon. IEEE Electron Device Lett. 26(9), 637–639 (2005)CrossRef
22.
Zurück zum Zitat Lee, C.H., Sazonov, A., Nathan, A.: High-performance n-channel 13.56 MHz plasma-enhanced chemical vapor deposition nanocrystalline silicon thin-film transistors. J. Vac. Sci. Technol. A 24(3), 618–623 (2006)CrossRef Lee, C.H., Sazonov, A., Nathan, A.: High-performance n-channel 13.56 MHz plasma-enhanced chemical vapor deposition nanocrystalline silicon thin-film transistors. J. Vac. Sci. Technol. A 24(3), 618–623 (2006)CrossRef
Metadaten
Titel
Model for threshold voltage instability in top-gated nanocrystalline silicon thin film transistor
verfasst von
Prachi Sharma
Navneet Gupta
Publikationsdatum
06.01.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 2/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-015-0789-7

Weitere Artikel der Ausgabe 2/2016

Journal of Computational Electronics 2/2016 Zur Ausgabe

Neuer Inhalt