2013 | OriginalPaper | Buchkapitel
Model Identification from Incomplete Data Set Describing State Variable Subset Only – The Problem of Optimizing and Predicting Heuristic Incorporation into Evolutionary System
verfasst von : Tomas Brandejsky
Erschienen in: Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems
Verlag: Springer International Publishing
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
Presented paper describes the application of evolutionary system GPA-ES in difficult task of chaotic system symbolic regression from incomplete training data set describing only some of model variables. The algorithm uses many heuristics which are described below and which will be subject of future development. The first test of algorithm was applying the Lorenz attractor system data, where only the original system x and y variable data were used and z variable data were estimated.