Skip to main content

2023 | OriginalPaper | Buchkapitel

3. Model of Cownose Ray Locomotion

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter describes the kinematics of cownose ray swimming, relating it to fin geometry and skeletal structure. The equation of the deformed fin surface is presented, and the influence of different kinematic parameters on fin movement is analyzed. Previous numerical studies about batoid swimming are briefly described, and the numerical implementation of the CFD model of cownose ray swimming is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rosemberger LJ (2001) Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J Exp Biol 204:379–394CrossRef Rosemberger LJ (2001) Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J Exp Biol 204:379–394CrossRef
2.
Zurück zum Zitat Rosemberger LJ, Westneat MW (2009) Functional morphology of undulatory pectoral fin locomotion in the stingray taeniura lymma (chondrichthyes: Dasyatidae). J Exp Biol 202:3523–3539CrossRef Rosemberger LJ, Westneat MW (2009) Functional morphology of undulatory pectoral fin locomotion in the stingray taeniura lymma (chondrichthyes: Dasyatidae). J Exp Biol 202:3523–3539CrossRef
3.
Zurück zum Zitat Salazar R, Fuentes V, Abdelkefi A (2018) Classification of biological and bioinspired aquatic systems: a review. Ocean Eng 148:75–114CrossRef Salazar R, Fuentes V, Abdelkefi A (2018) Classification of biological and bioinspired aquatic systems: a review. Ocean Eng 148:75–114CrossRef
4.
Zurück zum Zitat Hall KC, Hundt PJ, Swenson JD, Summers AP, Crow KD (2018) The evolution of underwater flight: The redistribution of pectoral fin rays, in manta rays and their relatives (myliobatidae). J Morphol 279:1155–1170CrossRef Hall KC, Hundt PJ, Swenson JD, Summers AP, Crow KD (2018) The evolution of underwater flight: The redistribution of pectoral fin rays, in manta rays and their relatives (myliobatidae). J Morphol 279:1155–1170CrossRef
5.
Zurück zum Zitat Di Santo V, Kenaley CP (2016) Skating by: low energetic costs of swimming in a batoid fish. J Exp Biol 219:1804–1807 Di Santo V, Kenaley CP (2016) Skating by: low energetic costs of swimming in a batoid fish. J Exp Biol 219:1804–1807
6.
Zurück zum Zitat Fish FE, Schreiber CM, Moored KW, Liu G, Dong H, Bart-Smith H (2016) Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace 3(20):3030020 Fish FE, Schreiber CM, Moored KW, Liu G, Dong H, Bart-Smith H (2016) Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace 3(20):3030020
7.
Zurück zum Zitat Parson JM, Fish FE, Nicastro AJ (2011) Turning performance of batoids: limitations of a rigid body. J Exp Marine Biol Ecol 402:12–18CrossRef Parson JM, Fish FE, Nicastro AJ (2011) Turning performance of batoids: limitations of a rigid body. J Exp Marine Biol Ecol 402:12–18CrossRef
8.
Zurück zum Zitat Schaefer JT, Summers AP (2005) Batoid wing skeletal structure: novel morphologies, mechanical implications, and phylogenetic patterns. J Morphol 264:298–313CrossRef Schaefer JT, Summers AP (2005) Batoid wing skeletal structure: novel morphologies, mechanical implications, and phylogenetic patterns. J Morphol 264:298–313CrossRef
9.
Zurück zum Zitat Cai Y, Bi S, Li G, Hildre HP, Zhang H (2018) From natural complexity to biomimetic simplification: realization of bionic fish inspired by the cownose ray. IEEE Robot Autom Mag 99:1–13 Cai Y, Bi S, Li G, Hildre HP, Zhang H (2018) From natural complexity to biomimetic simplification: realization of bionic fish inspired by the cownose ray. IEEE Robot Autom Mag 99:1–13
10.
Zurück zum Zitat Cai Y, Bi S, Zheng L (2012) Design optimization of a bionic fish with multi-joint fin rays. Adv Robot 26:177–196CrossRef Cai Y, Bi S, Zheng L (2012) Design optimization of a bionic fish with multi-joint fin rays. Adv Robot 26:177–196CrossRef
11.
Zurück zum Zitat Russo RS, Blemker SS, Fish FE, Bart-Smith H (2015) Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design. Bioinspiration Biomim 10:046002CrossRef Russo RS, Blemker SS, Fish FE, Bart-Smith H (2015) Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design. Bioinspiration Biomim 10:046002CrossRef
12.
Zurück zum Zitat Liu G, Ren Y, Zhu J, Bart-Smith H, Dong H (2015) Thrust producing mechanisms in ray-inspired underwater vehicle propulsion. Theor Appl Mech Lett 5:54–57CrossRef Liu G, Ren Y, Zhu J, Bart-Smith H, Dong H (2015) Thrust producing mechanisms in ray-inspired underwater vehicle propulsion. Theor Appl Mech Lett 5:54–57CrossRef
13.
Zurück zum Zitat Zhan J, Gong Y, Li T (2014) Effect of angles of attack on the hydrodynamic forces of manta ray. In: Proceedings of the eleventh pacific/Asia offshore mechanics symposium Zhan J, Gong Y, Li T (2014) Effect of angles of attack on the hydrodynamic forces of manta ray. In: Proceedings of the eleventh pacific/Asia offshore mechanics symposium
14.
Zurück zum Zitat Sharp N, Hagen-Gates V, Hemingway E, Syme M, Via J, Feaster J, Bayandor J, Jung S, Battaglia F, Kurdila A (2014) Computational analysis of undulatory batoid motion for underwater robotic propulsion. In: Proceedings of the ASME 2014 4th joint US-European fluids engineering division summer meeting Sharp N, Hagen-Gates V, Hemingway E, Syme M, Via J, Feaster J, Bayandor J, Jung S, Battaglia F, Kurdila A (2014) Computational analysis of undulatory batoid motion for underwater robotic propulsion. In: Proceedings of the ASME 2014 4th joint US-European fluids engineering division summer meeting
15.
Zurück zum Zitat Liu X, Iwasaki T, Fish F (2013) Dynamic modeling and gait analysis of batoid swimming. In: 2013 American control conference (ACC) Liu X, Iwasaki T, Fish F (2013) Dynamic modeling and gait analysis of batoid swimming. In: 2013 American control conference (ACC)
16.
Zurück zum Zitat Chen W, Wu Z, Liu J, Shi S, Zhou Y (2011) Numerical simulation of batoid locomotion. J Hydrodyn 23(5):594–600CrossRef Chen W, Wu Z, Liu J, Shi S, Zhou Y (2011) Numerical simulation of batoid locomotion. J Hydrodyn 23(5):594–600CrossRef
17.
Zurück zum Zitat Bottom RG, Borazjani I, Blevins EL, Lauder GV (2016) Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex. J Fluid Mech 788:407–443MathSciNetCrossRefMATH Bottom RG, Borazjani I, Blevins EL, Lauder GV (2016) Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex. J Fluid Mech 788:407–443MathSciNetCrossRefMATH
18.
Zurück zum Zitat Thekkethil N, Sharma A, Agrawal A (2020) Three-dimensional biological hydrodynamics study on various types of batoid fishlike locomotion. Phys Rev Fluids 5:023101CrossRef Thekkethil N, Sharma A, Agrawal A (2020) Three-dimensional biological hydrodynamics study on various types of batoid fishlike locomotion. Phys Rev Fluids 5:023101CrossRef
19.
Zurück zum Zitat Huang H, Sheng C, Wu J, Wu G, Zhou C, Wang H (2021) Hydrodynamic analysis and motion simulation of fin and propeller driven manta ray robot. Appl Ocean Res 108:102528CrossRef Huang H, Sheng C, Wu J, Wu G, Zhou C, Wang H (2021) Hydrodynamic analysis and motion simulation of fin and propeller driven manta ray robot. Appl Ocean Res 108:102528CrossRef
20.
Zurück zum Zitat Moored KW, Dewey PA, Leftwich MC, Bart-Smith H, Smits AJ (2011) Bioinspired propulsion mechanisms based on manta ray locomotion. Marine Technol Soc J 45(4):110–118CrossRef Moored KW, Dewey PA, Leftwich MC, Bart-Smith H, Smits AJ (2011) Bioinspired propulsion mechanisms based on manta ray locomotion. Marine Technol Soc J 45(4):110–118CrossRef
21.
Zurück zum Zitat Gazzola M, Argentina M, Mahadevan L (2014) Scaling macroscopic aquatic locomotion. Nat Phys 10:758–761CrossRef Gazzola M, Argentina M, Mahadevan L (2014) Scaling macroscopic aquatic locomotion. Nat Phys 10:758–761CrossRef
Metadaten
Titel
Model of Cownose Ray Locomotion
verfasst von
Giovanni Bianchi
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-30548-1_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.