Skip to main content
Erschienen in: Metal Science and Heat Treatment 7-8/2019

04.12.2019

Model of Precipitation Hardening of Al – Mg – Si Alloys Under Aging

verfasst von: Hansol Maeng, Young Choi, Seok-Jae Lee

Erschienen in: Metal Science and Heat Treatment | Ausgabe 7-8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A model of precipitation hardening of an Al – Mg – Si alloy due to precipitation of several phases formed under different aging conditions is presented. The diameters of the precipitated particles and their relative contents are determined by the method of thermodynamic simulation. The characteristics of the precipitated phases are allowed for, which raises the prediction accuracy. The rate of the precipitation of the β- and β′-phases is shown to increase with the aging time, and the rate of growth of their particles is shown to increase with the temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. S. Miller, L. Zhuang, J. Bottema, et al., “Recent development in aluminum alloys for the automotive industry,” Mater. Sci. Eng. A, 280, 37 – 49 (2000).CrossRef W. S. Miller, L. Zhuang, J. Bottema, et al., “Recent development in aluminum alloys for the automotive industry,” Mater. Sci. Eng. A, 280, 37 – 49 (2000).CrossRef
2.
Zurück zum Zitat G. Nurislamova, X. Sauvage, M. Murashkin, et al., “Nanostructure and related mechanical properties of an Al – Mg – Si alloy processed by severe plastic deformation,” Philos. Mag. Lett., 88, 459 – 466 (2008).CrossRef G. Nurislamova, X. Sauvage, M. Murashkin, et al., “Nanostructure and related mechanical properties of an Al – Mg – Si alloy processed by severe plastic deformation,” Philos. Mag. Lett., 88, 459 – 466 (2008).CrossRef
3.
Zurück zum Zitat L. P. Troeger and E. A. Starke Jr., “Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy,” Mater. Sci. Eng. A, 277, 102 – 113 (2000).CrossRef L. P. Troeger and E. A. Starke Jr., “Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy,” Mater. Sci. Eng. A, 277, 102 – 113 (2000).CrossRef
4.
Zurück zum Zitat H. Demir and S. Gunduz, “The effects of aging on machinability of 6061 aluminum alloy,” Mater. Design, 30, 1480 – 1483 (2009).CrossRef H. Demir and S. Gunduz, “The effects of aging on machinability of 6061 aluminum alloy,” Mater. Design, 30, 1480 – 1483 (2009).CrossRef
5.
Zurück zum Zitat F. Ozturk, A. Sisman, S. Toros, et al., “Influence of aging treatment on mechanical properties of 6061 aluminum alloy,” Mater. Design, 31, 972 – 975 (2010).CrossRef F. Ozturk, A. Sisman, S. Toros, et al., “Influence of aging treatment on mechanical properties of 6061 aluminum alloy,” Mater. Design, 31, 972 – 975 (2010).CrossRef
6.
Zurück zum Zitat P. N. Rao, D. Singh, H.-G. Brokmeier, and R. Jayaganthan, “Effect of ageing on tensile behavior of ultrafine grained Al 6061 alloy,” Mater. Sci. Eng. A, 641, 391 – 401 (2015).CrossRef P. N. Rao, D. Singh, H.-G. Brokmeier, and R. Jayaganthan, “Effect of ageing on tensile behavior of ultrafine grained Al 6061 alloy,” Mater. Sci. Eng. A, 641, 391 – 401 (2015).CrossRef
7.
Zurück zum Zitat S. Liu, C. Li, S. Han, et al., “Effect of natural aging on quenchinduced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy,” J. Alloys Compd., 625, 34 – 43 (2015).CrossRef S. Liu, C. Li, S. Han, et al., “Effect of natural aging on quenchinduced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy,” J. Alloys Compd., 625, 34 – 43 (2015).CrossRef
8.
Zurück zum Zitat J. Chen, L. Zhen, S. Yang, et al., “Investigation of precipitation behavior and related hardening in AA7055 aluminum alloy,” Mater. Sci. Eng. A, 500, 34 – 42 (2009).CrossRef J. Chen, L. Zhen, S. Yang, et al., “Investigation of precipitation behavior and related hardening in AA7055 aluminum alloy,” Mater. Sci. Eng. A, 500, 34 – 42 (2009).CrossRef
9.
Zurück zum Zitat M. Dixit, R. S. Mishra, and K. K. Sankaran, “Structure-property correlations in A17050 and A17055 high-strength aluminum alloys,” Mater. Sci. Eng. A, 478, 163 – 172 (2008).CrossRef M. Dixit, R. S. Mishra, and K. K. Sankaran, “Structure-property correlations in A17050 and A17055 high-strength aluminum alloys,” Mater. Sci. Eng. A, 478, 163 – 172 (2008).CrossRef
10.
Zurück zum Zitat S. Nandy, “Process model to predict yield strength of AA6063 alloy,” Mater. Sci. Eng. A, 644, 413 – 424 (2015).CrossRef S. Nandy, “Process model to predict yield strength of AA6063 alloy,” Mater. Sci. Eng. A, 644, 413 – 424 (2015).CrossRef
12.
Zurück zum Zitat O. H. Myhr, Ø. Grong, and S. J. Andersen, “Modelling of the age hardening behavior of Al – Mg – Si alloys,” Acta Mater., 49, 65 – 75 (2001).CrossRef O. H. Myhr, Ø. Grong, and S. J. Andersen, “Modelling of the age hardening behavior of Al – Mg – Si alloys,” Acta Mater., 49, 65 – 75 (2001).CrossRef
13.
Zurück zum Zitat G. E. Totten and D. S. MacKenzie, Handbook of Aluminum: Physical Metallurgy and Processes, Marcel Dekker Inc. (2003), Vol. 1. G. E. Totten and D. S. MacKenzie, Handbook of Aluminum: Physical Metallurgy and Processes, Marcel Dekker Inc. (2003), Vol. 1.
14.
Zurück zum Zitat P. M. Kelly, “The effect of particle shape on dispersion hardening,” Scr. Metall., 6, 647 – 656 (1972).CrossRef P. M. Kelly, “The effect of particle shape on dispersion hardening,” Scr. Metall., 6, 647 – 656 (1972).CrossRef
15.
Zurück zum Zitat E. Hornbogen and E. A. Starke Jr., “Theory assisted design of high strength low alloy aluminum,” Acta Metall. Mater., 41, 1 – 16 (1993).CrossRef E. Hornbogen and E. A. Starke Jr., “Theory assisted design of high strength low alloy aluminum,” Acta Metall. Mater., 41, 1 – 16 (1993).CrossRef
16.
Zurück zum Zitat H. R. Shercliff and M. F. Ashby, “Aprocess model for age hardening of aluminum alloys. I, The model,” Acta Metall. Mater., 38, 1789 – 1802 (1990).CrossRef H. R. Shercliff and M. F. Ashby, “Aprocess model for age hardening of aluminum alloys. I, The model,” Acta Metall. Mater., 38, 1789 – 1802 (1990).CrossRef
17.
Zurück zum Zitat F. D. Fischer, J. Svoboda, F. Appel, and E. Kozeschnik, “Modeling of excess vacancy annihilation at different types of sinks,” Acta Mater., 59, 3463 – 3472 (2011).CrossRef F. D. Fischer, J. Svoboda, F. Appel, and E. Kozeschnik, “Modeling of excess vacancy annihilation at different types of sinks,” Acta Mater., 59, 3463 – 3472 (2011).CrossRef
18.
Zurück zum Zitat R. Chen, Q. Xu, H. Guo, et al., “Modeling the precipitation kinetics and tensile properties in Al – 7Si – Mg cast aluminum alloys,” Mater. Sci. Eng. A, 685, 403 – 416 (2017).CrossRef R. Chen, Q. Xu, H. Guo, et al., “Modeling the precipitation kinetics and tensile properties in Al – 7Si – Mg cast aluminum alloys,” Mater. Sci. Eng. A, 685, 403 – 416 (2017).CrossRef
19.
Zurück zum Zitat D. J. Edwards, B. N. Singh, and S. Tähtinen, “Effect of heat treatments on precipitate microstructure and mechanical properties of a CuCrZr alloy,” J. Nuclear Mater., 1, 904 – 909 (2007).CrossRef D. J. Edwards, B. N. Singh, and S. Tähtinen, “Effect of heat treatments on precipitate microstructure and mechanical properties of a CuCrZr alloy,” J. Nuclear Mater., 1, 904 – 909 (2007).CrossRef
20.
Zurück zum Zitat J. D. Robson, N. Stanford, and M. R. Barnett, “Effect of precipitate shape on slip and twinning in magnesium alloys,” Acta Mater., 59, 1945 – 1956 (2011).CrossRef J. D. Robson, N. Stanford, and M. R. Barnett, “Effect of precipitate shape on slip and twinning in magnesium alloys,” Acta Mater., 59, 1945 – 1956 (2011).CrossRef
21.
Zurück zum Zitat J. F. Nie, “Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys,” Scr. Mater., 48, 1009 – 1015 (2003).CrossRef J. F. Nie, “Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys,” Scr. Mater., 48, 1009 – 1015 (2003).CrossRef
22.
Zurück zum Zitat G. R. Speich and W. A. Spitzig, “Effect of volume fraction and shape of sulfide inclusions on through-thickness ductility and impact energy of high-strength 4340 plate steels,” Metall. Trans. A, 13, 2239 – 2258 (1982).CrossRef G. R. Speich and W. A. Spitzig, “Effect of volume fraction and shape of sulfide inclusions on through-thickness ductility and impact energy of high-strength 4340 plate steels,” Metall. Trans. A, 13, 2239 – 2258 (1982).CrossRef
23.
Zurück zum Zitat D. M. Shah and D. N. Duhl, “The effect of orientation, temperature and gamma prime size on the yield strength of a single crystal nickel base superalloy,” The Minerals, Metals and Mater. Soc., 5, 105 – 114 (1984). D. M. Shah and D. N. Duhl, “The effect of orientation, temperature and gamma prime size on the yield strength of a single crystal nickel base superalloy,” The Minerals, Metals and Mater. Soc., 5, 105 – 114 (1984).
24.
Zurück zum Zitat S. J. Andersen, H.W. Zandbergen, J. Jansen, et al., “The crystal structure of the __ phase in Al – Mg – Si alloys,” Acta Mater., 46, 3283 – 3298 (1998).CrossRef S. J. Andersen, H.W. Zandbergen, J. Jansen, et al., “The crystal structure of the __ phase in Al – Mg – Si alloys,” Acta Mater., 46, 3283 – 3298 (1998).CrossRef
25.
Zurück zum Zitat S. D. Harkness and J. J. Hren, “An investigation of strengthening by spherical coherent GP zones,” Metall. Trans., 1, 43 – 49 (1970). S. D. Harkness and J. J. Hren, “An investigation of strengthening by spherical coherent GP zones,” Metall. Trans., 1, 43 – 49 (1970).
26.
Zurück zum Zitat J. H. Hollomon, “Tensile deformation,” Trans. Metall. Soc. AIME, 162, 268 – 290 (1945). J. H. Hollomon, “Tensile deformation,” Trans. Metall. Soc. AIME, 162, 268 – 290 (1945).
27.
Zurück zum Zitat D. C. Ludwigson, “Modified stress-strain relation for FCC metals and alloys,” Metall. Trans., 2, 2825 – 2828 (1971).CrossRef D. C. Ludwigson, “Modified stress-strain relation for FCC metals and alloys,” Metall. Trans., 2, 2825 – 2828 (1971).CrossRef
28.
Zurück zum Zitat H. W. Swift, “Plastic instability under plane stress,” J. Mechan. Phys. Solids, 1, 1 – 18 (1952).CrossRef H. W. Swift, “Plastic instability under plane stress,” J. Mechan. Phys. Solids, 1, 1 – 18 (1952).CrossRef
29.
Zurück zum Zitat E. Voce, “The relationship between stress and strain for homogeneous deformation,” J. Inst. Metals, 74, 537 – 562 (1948). E. Voce, “The relationship between stress and strain for homogeneous deformation,” J. Inst. Metals, 74, 537 – 562 (1948).
30.
Zurück zum Zitat J. E. Hockett and O. D. Sherby, “Large strain deformation of polycrystalline metals at low homologous temperatures,” J. Mechan. Phys. Solids, 23, 87 – 98 (1975).CrossRef J. E. Hockett and O. D. Sherby, “Large strain deformation of polycrystalline metals at low homologous temperatures,” J. Mechan. Phys. Solids, 23, 87 – 98 (1975).CrossRef
31.
Zurück zum Zitat H. Mecking and U. F. Kocks, “Kinetics of flow and strain-hardening,” Acta Metall., 29, 1865 – 1874 (1981).CrossRef H. Mecking and U. F. Kocks, “Kinetics of flow and strain-hardening,” Acta Metall., 29, 1865 – 1874 (1981).CrossRef
32.
Zurück zum Zitat S. D. Liu, X. M. Zhang, M. A. Chen, and J. H. You, “Influence of aging on quench sensitivity effect of 7055 aluminum alloy,” Mater. Character., 59, 53 – 60 (2008).CrossRef S. D. Liu, X. M. Zhang, M. A. Chen, and J. H. You, “Influence of aging on quench sensitivity effect of 7055 aluminum alloy,” Mater. Character., 59, 53 – 60 (2008).CrossRef
33.
Zurück zum Zitat D. Maisonnette, M. Suery, D. Nelias, et al., “Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminum alloy,” Mater. Sci. Eng. A, 528, 2718 – 2724 (2011).CrossRef D. Maisonnette, M. Suery, D. Nelias, et al., “Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminum alloy,” Mater. Sci. Eng. A, 528, 2718 – 2724 (2011).CrossRef
34.
Zurück zum Zitat F. Ozturk, E. Esener, S. Toros, and C. R. Picu, “Effects of aging parameters on formability of 6061-O alloy,” Mater. Design, 31, 4847 – 4852 (2010).CrossRef F. Ozturk, E. Esener, S. Toros, and C. R. Picu, “Effects of aging parameters on formability of 6061-O alloy,” Mater. Design, 31, 4847 – 4852 (2010).CrossRef
35.
Zurück zum Zitat J. Philibert, A. Vignes, Y. Brechet, and P. Combarde, Metallurgie — Du Minerai au Materiau, Dunod (2002). J. Philibert, A. Vignes, Y. Brechet, and P. Combarde, Metallurgie — Du Minerai au Materiau, Dunod (2002).
36.
Zurück zum Zitat C. Ravi and C. Wolverton, “First-principles study of crystal structure and stability of Al – Mg – Si – (Cu) precipitates,” Acta Mater., 52, 4213 – 4227 (2004).CrossRef C. Ravi and C. Wolverton, “First-principles study of crystal structure and stability of Al – Mg – Si – (Cu) precipitates,” Acta Mater., 52, 4213 – 4227 (2004).CrossRef
37.
Zurück zum Zitat S. Rajasekhara and P. J. Ferreira, “Martensite austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel,” Acta Mater., 59, 738 – 748 (2011).CrossRef S. Rajasekhara and P. J. Ferreira, “Martensite austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel,” Acta Mater., 59, 738 – 748 (2011).CrossRef
Metadaten
Titel
Model of Precipitation Hardening of Al – Mg – Si Alloys Under Aging
verfasst von
Hansol Maeng
Young Choi
Seok-Jae Lee
Publikationsdatum
04.12.2019
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 7-8/2019
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-019-00445-8

Weitere Artikel der Ausgabe 7-8/2019

Metal Science and Heat Treatment 7-8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.