Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 7/2020

01.07.2020 | THEORY OF METALS

Model of the Final Stage of Nonstationary Radiation Swelling of Metals

verfasst von: A. V. Kozlov, I. A. Portnykh, A. R. Isinbaev

Erschienen in: Physics of Metals and Metallography | Ausgabe 7/2020

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

A model of the final stage of nonstationary swelling has been developed to predict the residual life of fast neutron fuel elements by the criterion of achieving a swelling of 15%. A criterion for achieving this stage is formulated, using the shape of the histogram of the void size distribution. A set of characteristics of radiation porosity, sufficient for a quantitative description of the swelling of reactor structures, is determined. The possibilities of using the model to predict the residual life of the fuel-element claddings made of EK164 steel after a service in the BN-600 reactor until achieving a maximum damaging dose of 99 dpa are illustrated.
Literatur
1.
Zurück zum Zitat F. A. Garner, M. B. Toloczko, and B. N. Sencer, “Comparison of swelling and irradiation creep behavior of fcc-austenitic/martensitic alloys at high neutron exposure,” J. Nucl. Mater. 276, 123–142 (2000). CrossRef F. A. Garner, M. B. Toloczko, and B. N. Sencer, “Comparison of swelling and irradiation creep behavior of fcc-austenitic/martensitic alloys at high neutron exposure,” J. Nucl. Mater. 276, 123–142 (2000). CrossRef
2.
Zurück zum Zitat A. V. Tselishchev, V. S. Ageev, Yu. P. Budanov, N. M. Mitrophanova, and M. V. Leonteva-Smirnova, “Designing a structural steel for fuel elements and fuel assembes of fast sodium reactors,” Atom. Energiya 108, 217–221 (2010). A. V. Tselishchev, V. S. Ageev, Yu. P. Budanov, N. M. Mitrophanova, and M. V. Leonteva-Smirnova, “Designing a structural steel for fuel elements and fuel assembes of fast sodium reactors,” Atom. Energiya 108, 217–221 (2010).
3.
Zurück zum Zitat A. G. Zaluzhnyi, Yu. N. Sokurskii, and V. N. Tebus, Helium in Reactor Materials (Moscow, Energoatomizdat, 1988). A. G. Zaluzhnyi, Yu. N. Sokurskii, and V. N. Tebus, Helium in Reactor Materials (Moscow, Energoatomizdat, 1988).
4.
Zurück zum Zitat C. A. Walst, J. Yuan, and L. M. Brown, “A procedure for measuring the helium density and pressure in nanometre-sized bubbles in irradiated materials using electron-energy-loss spectroscopy,” Philos. Mag. A 80, 1507–1543 (2000). CrossRef C. A. Walst, J. Yuan, and L. M. Brown, “A procedure for measuring the helium density and pressure in nanometre-sized bubbles in irradiated materials using electron-energy-loss spectroscopy,” Philos. Mag. A 80, 1507–1543 (2000). CrossRef
5.
Zurück zum Zitat A. V. Kozlov, I. A. Portnykh, A. I. Blokhin, D. A. Blokhin, and N. A. Demin, “ The dependence of critical diameter of void nuclei in ChS-68 austenitic steel on temperature of neutron irradiation in the model of formation of helium-vacancy bubbles,” Inorg. Mater.: Appl. Res. 4, 183–188 (2012). CrossRef A. V. Kozlov, I. A. Portnykh, A. I. Blokhin, D. A. Blokhin, and N. A. Demin, “ The dependence of critical diameter of void nuclei in ChS-68 austenitic steel on temperature of neutron irradiation in the model of formation of helium-vacancy bubbles,” Inorg. Mater.: Appl. Res. 4, 183–188 (2012). CrossRef
6.
Zurück zum Zitat A. V. Kozlov and I. A. Portnykh, “Vacancy void growth rate as a function of the neutron irradiation parameters at the initial stage of transient swelling,” Russ. Metall. (Metally) 2019, 261–267 (2019). CrossRef A. V. Kozlov and I. A. Portnykh, “Vacancy void growth rate as a function of the neutron irradiation parameters at the initial stage of transient swelling,” Russ. Metall. (Metally) 2019, 261–267 (2019). CrossRef
7.
Zurück zum Zitat R. E. Dahl, Jr., J. R. Beeler, Jr., and R. D. Bourquin, “A computer simulation study of grain boundaries in FCC gamma-iron and their interactions with point defects,” in Interatom. Potent. Simul. Lattice Defects. Battelle Inst. Mater. Sci. Collog. (Seattle, Wash. Harrison Hot Springs, 1971; London, 1972) pp. 673–692. R. E. Dahl, Jr., J. R. Beeler, Jr., and R. D. Bourquin, “A computer simulation study of grain boundaries in FCC gamma-iron and their interactions with point defects,” in Interatom. Potent. Simul. Lattice Defects. Battelle Inst. Mater. Sci. Collog. (Seattle, Wash. Harrison Hot Springs, 1971; London, 1972) pp. 673–692.
8.
Zurück zum Zitat R. A. Johnson, “Calculations of small vacancy and interstitial clusters for an FCC lattice,” Phys. Rev. 152, 629–634 (1966). CrossRef R. A. Johnson, “Calculations of small vacancy and interstitial clusters for an FCC lattice,” Phys. Rev. 152, 629–634 (1966). CrossRef
9.
Zurück zum Zitat A. V. Kozlov, I. A. Portnykh, and O. I. Asiptsov, “Vacancy migration energy in steels and alloys,” Phys. Met. Metallogr. 120, 1133–1136 (2019). CrossRef A. V. Kozlov, I. A. Portnykh, and O. I. Asiptsov, “Vacancy migration energy in steels and alloys,” Phys. Met. Metallogr. 120, 1133–1136 (2019). CrossRef
Metadaten
Titel
Model of the Final Stage of Nonstationary Radiation Swelling of Metals
verfasst von
A. V. Kozlov
I. A. Portnykh
A. R. Isinbaev
Publikationsdatum
01.07.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 7/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20070042

Weitere Artikel der Ausgabe 7/2020

Physics of Metals and Metallography 7/2020 Zur Ausgabe