Skip to main content
Erschienen in: Journal of Computational Electronics 3/2017

16.05.2017

Modeling and performance analysis of Schottky barrier carbon nanotube field effect transistor SB-CNTFET

verfasst von: Abdelali Diabi, Abdesselam Hocini, Souheil Mouetsi, Djamel Khedrouche

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The performance of a Schottky barrier carbon nanotube field effect transistor (SB-CNTFET) has been analyzed by means of a compact model. We present a study of the physical and geometrical parameters and their effects on the static and dynamic performance of the SB-CNTFET. For the static regime, we determine the variations in the current–voltage characteristics for three values of the potential barrier and the influence of the barrier on the on-state current. Also, we report the effect of the oxide thickness on the static performance. The relationship between the current–voltage characteristics and the nanotube diameter for different values of drain–source voltage is investigated. For dynamic systems, we study the effect of the gate–source voltage, the chirality and the CNT diameter on the transition frequency. It has been observed that the performance of the SB-CNTFET can be significantly controlled by changing some physical and geometrical parameters of the device.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dürkop, T., Kim, B.M., Fuhrer, M.S.: Properties and applications of high-mobility semiconducting nanotubes. J. Phys. Condens. Matter 16(18), R553 (2004)CrossRef Dürkop, T., Kim, B.M., Fuhrer, M.S.: Properties and applications of high-mobility semiconducting nanotubes. J. Phys. Condens. Matter 16(18), R553 (2004)CrossRef
2.
Zurück zum Zitat Kim, B.M., Brintlinger, T., Cobas, E., Zheng, H., Fuhrer, M.S., Yu, Z., Droopad, R., Ramdani, J., Eisenbeiser, K.: High-performance carbon nanotube transistors on SrTiO\(_3\)/Si substrates. Appl. Phys. Lett. 84(11), 1946 (2004)CrossRef Kim, B.M., Brintlinger, T., Cobas, E., Zheng, H., Fuhrer, M.S., Yu, Z., Droopad, R., Ramdani, J., Eisenbeiser, K.: High-performance carbon nanotube transistors on SrTiO\(_3\)/Si substrates. Appl. Phys. Lett. 84(11), 1946 (2004)CrossRef
3.
Zurück zum Zitat Javey, A., Guo, J., Paulsson, M., Wang, Q., Mann, D., Lundstrom, M., Dai, H.: High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92(10), 106804 (2004)CrossRef Javey, A., Guo, J., Paulsson, M., Wang, Q., Mann, D., Lundstrom, M., Dai, H.: High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92(10), 106804 (2004)CrossRef
4.
Zurück zum Zitat Appenzeller, J., Lin, Y., Knoch, J., Avouris, P.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett 93(19), 196805 (2004)CrossRef Appenzeller, J., Lin, Y., Knoch, J., Avouris, P.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett 93(19), 196805 (2004)CrossRef
5.
Zurück zum Zitat Morita, T., Singh, V., Oku, S., Nagamatsu, S., Takashima, W., Hayase, S., Kaneto, K.: Ambipolar transport in bilayer organic field-effect transistor based on poly(3-hexylthiophene) and fullerene derivatives. Jpn. J. Appl. Phys. 49, 041601 (2010)CrossRef Morita, T., Singh, V., Oku, S., Nagamatsu, S., Takashima, W., Hayase, S., Kaneto, K.: Ambipolar transport in bilayer organic field-effect transistor based on poly(3-hexylthiophene) and fullerene derivatives. Jpn. J. Appl. Phys. 49, 041601 (2010)CrossRef
6.
Zurück zum Zitat Appenzeller, J., Knoch, J., Derycke, V., Martel, R., Wind, S., Avouris, P.: Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 89(12), 126801 (2002)CrossRef Appenzeller, J., Knoch, J., Derycke, V., Martel, R., Wind, S., Avouris, P.: Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 89(12), 126801 (2002)CrossRef
7.
Zurück zum Zitat Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.: Ballistic carbon nanotube field-effect transistors. Nature 424(6949), 654–657 (2003)CrossRef Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.: Ballistic carbon nanotube field-effect transistors. Nature 424(6949), 654–657 (2003)CrossRef
8.
Zurück zum Zitat Appenzeller, J., Knoch, J., Radosavljevic, M., Avouris, P.: Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors. Phys. Rev. Lett 92(22), 226802 (2004)CrossRef Appenzeller, J., Knoch, J., Radosavljevic, M., Avouris, P.: Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors. Phys. Rev. Lett 92(22), 226802 (2004)CrossRef
9.
Zurück zum Zitat Radosavljevic, M., Heinze, S., Tersoff, J., Avouris, P.: Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83(12), 2435 (2003)CrossRef Radosavljevic, M., Heinze, S., Tersoff, J., Avouris, P.: Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83(12), 2435 (2003)CrossRef
10.
Zurück zum Zitat Javey, A., Guo, J., Farmer, D., Wang, Q., Yenilmez, E., Gordon, R., Lundstrom, M., Dai, H.: Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4(7), 1319–1322 (2004)CrossRef Javey, A., Guo, J., Farmer, D., Wang, Q., Yenilmez, E., Gordon, R., Lundstrom, M., Dai, H.: Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4(7), 1319–1322 (2004)CrossRef
11.
Zurück zum Zitat Chen, J., Clinke, C., Afzali, A., Avouris, P.: Air-stable chemical doping of carbon nanotube transistors. In: Proceeding on Device Research Conference, pp. 137–138 (2004) Chen, J., Clinke, C., Afzali, A., Avouris, P.: Air-stable chemical doping of carbon nanotube transistors. In: Proceeding on Device Research Conference, pp. 137–138 (2004)
12.
Zurück zum Zitat Javey, A., Tu, R., Farmer, D.B., Guo, J., Gordon, R.G., Dai, H.: High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5(2), 345–348 (2005)CrossRef Javey, A., Tu, R., Farmer, D.B., Guo, J., Gordon, R.G., Dai, H.: High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5(2), 345–348 (2005)CrossRef
13.
Zurück zum Zitat Raychowdhury, A., Keshavarzi, A., Kurtin, J., De, V., Roy, K.: Carbon nanotube field-effect transistors for high-performance digital circuits—DC analysis and modeling toward optimum transistor structure. IEEE Trans. Electron Devices. 53(11), 2711–2717 (2006)CrossRef Raychowdhury, A., Keshavarzi, A., Kurtin, J., De, V., Roy, K.: Carbon nanotube field-effect transistors for high-performance digital circuits—DC analysis and modeling toward optimum transistor structure. IEEE Trans. Electron Devices. 53(11), 2711–2717 (2006)CrossRef
14.
Zurück zum Zitat Bhargava, K., Singh, V.: Electrical characterization and parameter extraction of organic thin film transistors using two dimensional numerical simulations. J. Comput. Electron. 13, 585–592 (2014)CrossRef Bhargava, K., Singh, V.: Electrical characterization and parameter extraction of organic thin film transistors using two dimensional numerical simulations. J. Comput. Electron. 13, 585–592 (2014)CrossRef
15.
Zurück zum Zitat Radosavljevic, M., Heinze, S., Tersoff, J., Avouris, P.: Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83, 2435 (2003)CrossRef Radosavljevic, M., Heinze, S., Tersoff, J., Avouris, P.: Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83, 2435 (2003)CrossRef
16.
Zurück zum Zitat Kordrostami, Z., Sheikhi, M.H.: Fundamental Physical Aspects of Carbon Nanotube Transistors. INTECH Open Access Publisher, Rijeka, Croatia (2010)CrossRef Kordrostami, Z., Sheikhi, M.H.: Fundamental Physical Aspects of Carbon Nanotube Transistors. INTECH Open Access Publisher, Rijeka, Croatia (2010)CrossRef
17.
Zurück zum Zitat Wang, W., Yang, X., Li, N., Xiao, G., Jiang, S., Xia, C., Wang, Y.: Transport study of gate and channel engineering on the surrounding-gate CNTFETs based on NEGF quantum theory. J. Comput. Electron. 13, 192–197 (2014)CrossRef Wang, W., Yang, X., Li, N., Xiao, G., Jiang, S., Xia, C., Wang, Y.: Transport study of gate and channel engineering on the surrounding-gate CNTFETs based on NEGF quantum theory. J. Comput. Electron. 13, 192–197 (2014)CrossRef
18.
Zurück zum Zitat Kordrostami, Z., Hassaninia, I., Sheikhi, M.H. : Unipolar Schottky-Ohmic carbon nanotube field effect transistor. In: 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2008. IEEE (2008) Kordrostami, Z., Hassaninia, I., Sheikhi, M.H. : Unipolar Schottky-Ohmic carbon nanotube field effect transistor. In: 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2008. IEEE (2008)
19.
Zurück zum Zitat Guo, J., Datta, S., Lundstrom, M.: A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors. IEEE Trans. Electron Dev. 51, 172–177 (2004)CrossRef Guo, J., Datta, S., Lundstrom, M.: A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors. IEEE Trans. Electron Dev. 51, 172–177 (2004)CrossRef
20.
Zurück zum Zitat Subhajit, D., Debaprasad, D., Rahaman, H.: Design of 9-transistor content addressable memory cells using Schottky-barrier carbon nanotube field effect transistors. In: IEEE 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), pp. 23–25. Durgapur, India (2016) Subhajit, D., Debaprasad, D., Rahaman, H.: Design of 9-transistor content addressable memory cells using Schottky-barrier carbon nanotube field effect transistors. In: IEEE 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), pp. 23–25. Durgapur, India (2016)
21.
Zurück zum Zitat Geetha, P., WahidaBanu, R.S.D.: A compact modelling of double-walled gate wrap around carbon nanotube array field effect transistors. J. Comput. Electron. 13, 900–916 (2014)CrossRef Geetha, P., WahidaBanu, R.S.D.: A compact modelling of double-walled gate wrap around carbon nanotube array field effect transistors. J. Comput. Electron. 13, 900–916 (2014)CrossRef
22.
Zurück zum Zitat Guo, J., Lundstrom, M.: Device Simulation of SWNT-FETs. Carbon Nanotube Electronics. Springer, New York (2009) Guo, J., Lundstrom, M.: Device Simulation of SWNT-FETs. Carbon Nanotube Electronics. Springer, New York (2009)
23.
Zurück zum Zitat Appenzeller, J., Lin, Y.M., Knoch, J., Chen, Z., Avouris, P.: Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. Electron Dev. 52(12), 2568–2576 (2005)CrossRef Appenzeller, J., Lin, Y.M., Knoch, J., Chen, Z., Avouris, P.: Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. Electron Dev. 52(12), 2568–2576 (2005)CrossRef
24.
Zurück zum Zitat Colinge, J.P.: Silicon-on-Insulator Technology: Materials to VLSI. Kluwer Academic, Norwell, MA (1991)CrossRef Colinge, J.P.: Silicon-on-Insulator Technology: Materials to VLSI. Kluwer Academic, Norwell, MA (1991)CrossRef
25.
Zurück zum Zitat Knoch, J., Zhang, M., Mantl, S., Appenzeller, J.: On the performance of single-gated ultrathin-body SOI Schottky-barrier MOSFETs. IEEE Trans. Electron Dev. 53(7), 1669–1674 (2006)CrossRef Knoch, J., Zhang, M., Mantl, S., Appenzeller, J.: On the performance of single-gated ultrathin-body SOI Schottky-barrier MOSFETs. IEEE Trans. Electron Dev. 53(7), 1669–1674 (2006)CrossRef
26.
Zurück zum Zitat Diabi, A., Hocini, A.: Compact modeling of the performance of SB-CNTFET as a function of geometrical and physical parameters. Acta Phys. Pol. A 127(4), 1124–1127 (2015)CrossRef Diabi, A., Hocini, A.: Compact modeling of the performance of SB-CNTFET as a function of geometrical and physical parameters. Acta Phys. Pol. A 127(4), 1124–1127 (2015)CrossRef
27.
Zurück zum Zitat Najari, M., Frégonèse, S., Maneux, C., Mnif, H., Masmoudi, N., Zimmer, T.: Schottky barrier carbon nanotube transistor: compact modeling, scaling study, and circuit design applications. IEEE Trans. Electron Dev. 58(1), 195–205 (2011)CrossRef Najari, M., Frégonèse, S., Maneux, C., Mnif, H., Masmoudi, N., Zimmer, T.: Schottky barrier carbon nanotube transistor: compact modeling, scaling study, and circuit design applications. IEEE Trans. Electron Dev. 58(1), 195–205 (2011)CrossRef
28.
Zurück zum Zitat Hasan, S., Salahuddin, S., Vaidyanathan, M., Alam, M.A.: High-frequency performance projections for ballistic carbon-nanotube transistors. IEEE Trans. Nanotechnol. Nanotechnol. 5(1), 14–22 (2006)CrossRef Hasan, S., Salahuddin, S., Vaidyanathan, M., Alam, M.A.: High-frequency performance projections for ballistic carbon-nanotube transistors. IEEE Trans. Nanotechnol. Nanotechnol. 5(1), 14–22 (2006)CrossRef
29.
Zurück zum Zitat Ferry, D., Stephen, K., Goodnick, M., Bird, J.: Transport in Nanostructures. Cambridge University Press, Cambridge (2009)CrossRef Ferry, D., Stephen, K., Goodnick, M., Bird, J.: Transport in Nanostructures. Cambridge University Press, Cambridge (2009)CrossRef
30.
Zurück zum Zitat Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997) Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)
31.
Zurück zum Zitat Sze, S.: Physics of Semiconductor Devices. Wiley, Hoboken (2007) Sze, S.: Physics of Semiconductor Devices. Wiley, Hoboken (2007)
32.
Zurück zum Zitat Shirazi, S.G., Mirzakuchki, S.: Dependence of carbon nanotube field effect transistors performance on doping level of channel at different diameters: on/off current ratio. Appl. Phys. Lett. 99(26), 263104–263104 (2011)CrossRef Shirazi, S.G., Mirzakuchki, S.: Dependence of carbon nanotube field effect transistors performance on doping level of channel at different diameters: on/off current ratio. Appl. Phys. Lett. 99(26), 263104–263104 (2011)CrossRef
33.
Zurück zum Zitat Maneux, C., Fregonese, S., Zimmer, T., Retailleau, S., Nguyen, H.N., Querlioz, D., Bournel, A., Dollfus, P., Triozon, F., Niquet, Y.M., Roche, S.: Schottky barrier carbon nanotube transistor: compact modeling, scaling study, and circuit design applications. Solid-State Electron. 89, 26–67 (2013)CrossRef Maneux, C., Fregonese, S., Zimmer, T., Retailleau, S., Nguyen, H.N., Querlioz, D., Bournel, A., Dollfus, P., Triozon, F., Niquet, Y.M., Roche, S.: Schottky barrier carbon nanotube transistor: compact modeling, scaling study, and circuit design applications. Solid-State Electron. 89, 26–67 (2013)CrossRef
34.
Zurück zum Zitat Yu, W.J., Kim, U.J., Kang, B.R., Lee, I.H., Lee, E., Lee, Y.H.: Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors. Nano Lett. 9, 1401–1405 (2009)CrossRef Yu, W.J., Kim, U.J., Kang, B.R., Lee, I.H., Lee, E., Lee, Y.H.: Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors. Nano Lett. 9, 1401–1405 (2009)CrossRef
Metadaten
Titel
Modeling and performance analysis of Schottky barrier carbon nanotube field effect transistor SB-CNTFET
verfasst von
Abdelali Diabi
Abdesselam Hocini
Souheil Mouetsi
Djamel Khedrouche
Publikationsdatum
16.05.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-0996-5

Weitere Artikel der Ausgabe 3/2017

Journal of Computational Electronics 3/2017 Zur Ausgabe

Neuer Inhalt