Skip to main content
Erschienen in: Meccanica 9/2018

22.01.2018

Modeling and preliminary analysis of piezoelectric energy harvester based on cylindrical tube conveying fluctuating fluid

Erschienen in: Meccanica | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this contribution, a novel type of piezoelectric tubular energy harvester based on fluctuating fluid pressure is investigated. Analytic model of the proposed energy harvester is built under the assumption of axisymmetric radial vibration. Exact solution of the piezoelectric vibrating tube is obtained with its output performances formulated. A series of numerical simulations are conducted to investigate the influences of geometrical parameters, input mechanical load parameters and output electrical load parameters upon the output performances of the proposed piezoelectric tubular energy harvester. The model and simulation results indicate the potential of the proposed piezoelectric tubular energy harvester. It is expected that the energy harvester be useful in powering wireless sensor network for the health monitoring of hydraulic systems, where fluid conveying pipe vibration is omnipresent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36(3):197–206CrossRef Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36(3):197–206CrossRef
2.
Zurück zum Zitat Beeby SP, Tudor MJ, White N (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef Beeby SP, Tudor MJ, White N (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef
3.
Zurück zum Zitat Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1ADSCrossRef Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1ADSCrossRef
4.
Zurück zum Zitat Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19(1):167–184MathSciNetCrossRef Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19(1):167–184MathSciNetCrossRef
5.
Zurück zum Zitat Cook-Chennault K, Thambi N, Sastry A (2008) Powering MEMS portable devicesa review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17(4):043001ADSCrossRef Cook-Chennault K, Thambi N, Sastry A (2008) Powering MEMS portable devicesa review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17(4):043001ADSCrossRef
6.
Zurück zum Zitat Bernitsas MM, Raghavan K, Ben-Simon Y, Garcia E (2008) VIVACE (Vortex Induced Vibration Aquatic Clean Energy): a new concept in generation of clean and renewable energy from fluid flow. J Offshore Mech Arct Eng 130(4):041101CrossRef Bernitsas MM, Raghavan K, Ben-Simon Y, Garcia E (2008) VIVACE (Vortex Induced Vibration Aquatic Clean Energy): a new concept in generation of clean and renewable energy from fluid flow. J Offshore Mech Arct Eng 130(4):041101CrossRef
7.
Zurück zum Zitat Barrero-Gil A, Alonso G, Sanz-Andres A (2010) Energy harvesting from transverse galloping. J Sound Vib 329(14):2873–2883ADSCrossRef Barrero-Gil A, Alonso G, Sanz-Andres A (2010) Energy harvesting from transverse galloping. J Sound Vib 329(14):2873–2883ADSCrossRef
8.
Zurück zum Zitat Cunefare KA, Skow E, Erturk A, Savor J, Verma N, Cacan M (2013) Energy harvesting from hydraulic pressure fluctuations. Smart Mater Struct 22(2):025036ADSCrossRef Cunefare KA, Skow E, Erturk A, Savor J, Verma N, Cacan M (2013) Energy harvesting from hydraulic pressure fluctuations. Smart Mater Struct 22(2):025036ADSCrossRef
9.
Zurück zum Zitat Allen J, Smits A (2001) Energy harvesting eel. J Fluids Struct 15(3–4):629–640CrossRef Allen J, Smits A (2001) Energy harvesting eel. J Fluids Struct 15(3–4):629–640CrossRef
10.
Zurück zum Zitat Pobering S, Ebermeyer S, Schwesinger N (2009) Generation of electrical energy using short piezoelectric cantilevers in flowing media. In: Proc. SPIE, vol 8288. p 728807 Pobering S, Ebermeyer S, Schwesinger N (2009) Generation of electrical energy using short piezoelectric cantilevers in flowing media. In: Proc. SPIE, vol 8288. p 728807
11.
Zurück zum Zitat Akaydın H, Elvin N, Andreopoulos Y (2010) Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials. Exp Fluids 49(1):291–304CrossRef Akaydın H, Elvin N, Andreopoulos Y (2010) Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials. Exp Fluids 49(1):291–304CrossRef
12.
Zurück zum Zitat Singh K, Michelin S, De Langre E (2012) The effect of non-uniform damping on flutter in axial flow and energy-harvesting strategies. In: Proceedings of Royal Society A, vol 468. The Royal Society, pp 3620–3635 Singh K, Michelin S, De Langre E (2012) The effect of non-uniform damping on flutter in axial flow and energy-harvesting strategies. In: Proceedings of Royal Society A, vol 468. The Royal Society, pp 3620–3635
13.
Zurück zum Zitat De Marqui C Jr, Erturk A, Inman DJ (2010) Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes. J Intell Mater Syst Struct 21(10):983–993CrossRef De Marqui C Jr, Erturk A, Inman DJ (2010) Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes. J Intell Mater Syst Struct 21(10):983–993CrossRef
14.
Zurück zum Zitat De Marqui C, Vieira WG, Erturk A, Inman DJ (2011) Modeling and analysis of piezoelectric energy harvesting from aeroelastic vibrations using the doublet-lattice method. J Vib Acoust 133(1):011003CrossRef De Marqui C, Vieira WG, Erturk A, Inman DJ (2011) Modeling and analysis of piezoelectric energy harvesting from aeroelastic vibrations using the doublet-lattice method. J Vib Acoust 133(1):011003CrossRef
15.
Zurück zum Zitat Peng Z, Zhu Q (2009) Energy harvesting through flow-induced oscillations of a foil. Phys Fluids 21(12):123602ADSCrossRefMATH Peng Z, Zhu Q (2009) Energy harvesting through flow-induced oscillations of a foil. Phys Fluids 21(12):123602ADSCrossRefMATH
16.
Zurück zum Zitat Erturk A, Vieira W, De Marqui Jr C, Inman D (2010) On the energy harvesting potential of piezoaeroelastic systems. Appl Phys Lett 96(18):184103ADSCrossRef Erturk A, Vieira W, De Marqui Jr C, Inman D (2010) On the energy harvesting potential of piezoaeroelastic systems. Appl Phys Lett 96(18):184103ADSCrossRef
17.
Zurück zum Zitat Sousa V, de Anicézio M, De Marqui C Jr, Erturk A (2011) Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment. Smart Mater Struct 20(9):094007ADSCrossRef Sousa V, de Anicézio M, De Marqui C Jr, Erturk A (2011) Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment. Smart Mater Struct 20(9):094007ADSCrossRef
18.
Zurück zum Zitat Elvin NG, Elvin AA (2009) The flutter response of a piezoelectrically damped cantilever pipe. J Intell Mater Syst Struct 20(16):2017–2026CrossRef Elvin NG, Elvin AA (2009) The flutter response of a piezoelectrically damped cantilever pipe. J Intell Mater Syst Struct 20(16):2017–2026CrossRef
20.
Zurück zum Zitat St Clair D, Bibo A, Sennakesavababu V, Daqaq M, Li G (2010) A scalable concept for micropower generation using flow-induced self-excited oscillations. Appl Phys Lett 96(14):144103ADSCrossRef St Clair D, Bibo A, Sennakesavababu V, Daqaq M, Li G (2010) A scalable concept for micropower generation using flow-induced self-excited oscillations. Appl Phys Lett 96(14):144103ADSCrossRef
21.
Zurück zum Zitat Wang DA, Liu NZ (2011) A shear mode piezoelectric energy harvester based on a pressurized water flow. Sens Actuators A 167(2):449–458CrossRef Wang DA, Liu NZ (2011) A shear mode piezoelectric energy harvester based on a pressurized water flow. Sens Actuators A 167(2):449–458CrossRef
22.
Zurück zum Zitat Deterre M, Lefeuvre E, Dufour-Gergam E (2012) An active piezoelectric energy extraction method for pressure energy harvesting. Smart Mater Struct 21(8):085004ADSCrossRef Deterre M, Lefeuvre E, Dufour-Gergam E (2012) An active piezoelectric energy extraction method for pressure energy harvesting. Smart Mater Struct 21(8):085004ADSCrossRef
23.
Zurück zum Zitat Wang DA, Ko HH (2010) Piezoelectric energy harvesting from flow-induced vibration. J Micromech Microeng 20(2):025019CrossRef Wang DA, Ko HH (2010) Piezoelectric energy harvesting from flow-induced vibration. J Micromech Microeng 20(2):025019CrossRef
24.
Zurück zum Zitat Wang Y, Wang L, Cheng T, Song Z, Qin F (2016) Sealed piezoelectric energy harvester driven by hyperbaric air load. Appl Phys Lett 108(3):033902ADSCrossRef Wang Y, Wang L, Cheng T, Song Z, Qin F (2016) Sealed piezoelectric energy harvester driven by hyperbaric air load. Appl Phys Lett 108(3):033902ADSCrossRef
25.
Zurück zum Zitat Matova S, Elfrink R, Vullers R, Van Schaijk R (2011) Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator. J Micromech Microeng 21(10):104001CrossRef Matova S, Elfrink R, Vullers R, Van Schaijk R (2011) Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator. J Micromech Microeng 21(10):104001CrossRef
26.
Zurück zum Zitat Paidoussis MP, Issid N (1974) Dynamic stability of pipes conveying fluid. J Sound Vib 33(3):267–294ADSCrossRef Paidoussis MP, Issid N (1974) Dynamic stability of pipes conveying fluid. J Sound Vib 33(3):267–294ADSCrossRef
27.
Zurück zum Zitat Haskins J, Walsh J (1957) Vibrations of ferroelectric cylindrical shells with transverse isotropy. I. Radially polarized case. J Acoust Soc Am 29(6):729–734ADSMathSciNetCrossRef Haskins J, Walsh J (1957) Vibrations of ferroelectric cylindrical shells with transverse isotropy. I. Radially polarized case. J Acoust Soc Am 29(6):729–734ADSMathSciNetCrossRef
28.
Zurück zum Zitat Shin DY, Grassia P, Derby B (2003) Oscillatory limited compressible fluid flow induced by the radial motion of a thick-walled piezoelectric tube. J Acoust Soc Am 114(3):1314–1321ADSCrossRef Shin DY, Grassia P, Derby B (2003) Oscillatory limited compressible fluid flow induced by the radial motion of a thick-walled piezoelectric tube. J Acoust Soc Am 114(3):1314–1321ADSCrossRef
29.
Zurück zum Zitat Paıdoussis M, Li G (1993) Pipes conveying fluid: a model dynamical problem. J Fluids Struct 7(2):137–204CrossRef Paıdoussis M, Li G (1993) Pipes conveying fluid: a model dynamical problem. J Fluids Struct 7(2):137–204CrossRef
30.
Zurück zum Zitat Semler C, Li G, Paıdoussis M (1994) The non-linear equations of motion of pipes conveying fluid. J Sound Vib 169(5):577–599ADSCrossRefMATH Semler C, Li G, Paıdoussis M (1994) The non-linear equations of motion of pipes conveying fluid. J Sound Vib 169(5):577–599ADSCrossRefMATH
31.
Zurück zum Zitat Kela L, Vähäoja P (2009) Measuring pressure wave velocity in a hydraulic system. Proc World Acad Sci Eng Technol 37:610–616 Kela L, Vähäoja P (2009) Measuring pressure wave velocity in a hydraulic system. Proc World Acad Sci Eng Technol 37:610–616
Metadaten
Titel
Modeling and preliminary analysis of piezoelectric energy harvester based on cylindrical tube conveying fluctuating fluid
Publikationsdatum
22.01.2018
Erschienen in
Meccanica / Ausgabe 9/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0826-2

Weitere Artikel der Ausgabe 9/2018

Meccanica 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.