Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

Modeling and Simulation of Discrete Particles in Fluid Flow

verfasst von : Martin R. Maxey, Gelonia L. Dent

Erschienen in: Collective Dynamics of Particles

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A summary is given of some of the methods for modeling and simulating the motion of small rigid particles in fluid flow. For isolated particles, or at very low volume fractions, approximate dynamic equations for tracking the motion of the particles can be formulated where the background flow is not modified. Even here, interesting features of the particle motion and distribution of particles can develop in nonuniform flows. For more complex situations, we describe the force coupling method (FCM) as an effective representation for particles moving at low and finite Reynolds numbers that may be applied to various dispersed multiphase flows.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat M. Abbas, P. Magaud, Y. Gao, and S. Geoffroy. Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers. Phys. Fluids, 26:123301, 2014.CrossRef M. Abbas, P. Magaud, Y. Gao, and S. Geoffroy. Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers. Phys. Fluids, 26:123301, 2014.CrossRef
Zurück zum Zitat R.J. Adrian and J. Westerweel. Particle Image Velocimetry. Number 30 in Cambridge Aerospace Series. Cambridge University Press, 2011. R.J. Adrian and J. Westerweel. Particle Image Velocimetry. Number 30 in Cambridge Aerospace Series. Cambridge University Press, 2011.
Zurück zum Zitat E.S. Asmolov. The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech., 381:63–87, 1999.CrossRefMATH E.S. Asmolov. The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech., 381:63–87, 1999.CrossRefMATH
Zurück zum Zitat T.R. Auton, J.C.R. Hunt, and M. Prudhomme. The force exerted on a body in inviscid steady non-uniform rotational flow. J. Fluid Mech., 197:241–257, 1988.MathSciNetCrossRefMATH T.R. Auton, J.C.R. Hunt, and M. Prudhomme. The force exerted on a body in inviscid steady non-uniform rotational flow. J. Fluid Mech., 197:241–257, 1988.MathSciNetCrossRefMATH
Zurück zum Zitat P. Bagchi and S. Balachandar. The force exerted on a body in inviscid steady non-uniform rotational flow. Phys. Fluids, 14:2719–2737, 2002.CrossRefMATH P. Bagchi and S. Balachandar. The force exerted on a body in inviscid steady non-uniform rotational flow. Phys. Fluids, 14:2719–2737, 2002.CrossRefMATH
Zurück zum Zitat P. Bagchi and S. Balachandar. Inertial and viscous forces on a rigid sphere in straining flows at moderate Reynolds numbers. J. Fluid Mech., 481:105–148, 2003.CrossRefMATH P. Bagchi and S. Balachandar. Inertial and viscous forces on a rigid sphere in straining flows at moderate Reynolds numbers. J. Fluid Mech., 481:105–148, 2003.CrossRefMATH
Zurück zum Zitat S. Balachandar and John K. Eaton. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech., 42:111–133, 2010.CrossRefMATH S. Balachandar and John K. Eaton. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech., 42:111–133, 2010.CrossRefMATH
Zurück zum Zitat A.B. Basset. On the motion of a sphere in a viscous liquid. Phil. Trans. Royal Soc. London. Series A, 179:43–63, 1888. A.B. Basset. On the motion of a sphere in a viscous liquid. Phil. Trans. Royal Soc. London. Series A, 179:43–63, 1888.
Zurück zum Zitat A.B. Basset. Descent of a sphere in a viscous fluid. Quarterly Journal of Pure and Applied Mathematics, 41:369–381, 1910.MATH A.B. Basset. Descent of a sphere in a viscous fluid. Quarterly Journal of Pure and Applied Mathematics, 41:369–381, 1910.MATH
Zurück zum Zitat G.K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967. G.K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.
Zurück zum Zitat G.K. Batchelor. Sedimentation in a dilute dispersion of spheres. J. Fluid Mech., 52(02):245–268, 1972.CrossRefMATH G.K. Batchelor. Sedimentation in a dilute dispersion of spheres. J. Fluid Mech., 52(02):245–268, 1972.CrossRefMATH
Zurück zum Zitat L. Bergougnoux, G. Bouchet, D. Lopez, and É. Guazzelli. The motion of solid spherical particles falling in a cellular flow field at low Stokes number. Phys. Fluids, 26(9):093302, 2014.CrossRef L. Bergougnoux, G. Bouchet, D. Lopez, and É. Guazzelli. The motion of solid spherical particles falling in a cellular flow field at low Stokes number. Phys. Fluids, 26(9):093302, 2014.CrossRef
Zurück zum Zitat W. P. Breugem. A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Physics, 231:4469–4498, 2012.MathSciNetCrossRefMATH W. P. Breugem. A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Physics, 231:4469–4498, 2012.MathSciNetCrossRefMATH
Zurück zum Zitat R.E. Caflisch and J.H.C. Luke. Variance in the sedimentation speed of a suspension. Phys. Fluids, 28(3):759–760, 1985.CrossRefMATH R.E. Caflisch and J.H.C. Luke. Variance in the sedimentation speed of a suspension. Phys. Fluids, 28(3):759–760, 1985.CrossRefMATH
Zurück zum Zitat F. Candelier, J.R. Angilella, and M. Souhar. On the effect of the Boussinesq-Basset force on the radial migration of a Stokes particle in a vortex. Phys. Fluids, 16:1765–1776, 2004.MathSciNetCrossRefMATH F. Candelier, J.R. Angilella, and M. Souhar. On the effect of the Boussinesq-Basset force on the radial migration of a Stokes particle in a vortex. Phys. Fluids, 16:1765–1776, 2004.MathSciNetCrossRefMATH
Zurück zum Zitat E. J. Chang and M. R. Maxey. Unsteady flow about a sphere at low to moderate Reynolds number. Part 1. Oscillatory motion. J. Fluid Mech., 277:347–379, 1994.CrossRefMATH E. J. Chang and M. R. Maxey. Unsteady flow about a sphere at low to moderate Reynolds number. Part 1. Oscillatory motion. J. Fluid Mech., 277:347–379, 1994.CrossRefMATH
Zurück zum Zitat E. J. Chang and M. R. Maxey. Unsteady flow about a sphere at low to moderate Reynolds number. Part 2. Accelerated motion. J. Fluid Mech., 303:133–153, 1995.CrossRefMATH E. J. Chang and M. R. Maxey. Unsteady flow about a sphere at low to moderate Reynolds number. Part 2. Accelerated motion. J. Fluid Mech., 303:133–153, 1995.CrossRefMATH
Zurück zum Zitat E. Climent and M.R. Maxey. Numerical simulations of random suspensions at finite Reynolds numbers. Int. J. Multiphase Flow, 29:579–601, 2003.CrossRefMATH E. Climent and M.R. Maxey. Numerical simulations of random suspensions at finite Reynolds numbers. Int. J. Multiphase Flow, 29:579–601, 2003.CrossRefMATH
Zurück zum Zitat S.L. Dance and M.R. Maxey. Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J. Comput. Phys., 189:212–238, 2003.MathSciNetCrossRefMATH S.L. Dance and M.R. Maxey. Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J. Comput. Phys., 189:212–238, 2003.MathSciNetCrossRefMATH
Zurück zum Zitat S.L. Dance, E. Climent, and M.R. Maxey. Collision barrier effects on the bulk flow in a random suspension. Phys. Fluids, 16:828–831, 2004.CrossRefMATH S.L. Dance, E. Climent, and M.R. Maxey. Collision barrier effects on the bulk flow in a random suspension. Phys. Fluids, 16:828–831, 2004.CrossRefMATH
Zurück zum Zitat R.H. Davis and A. Acrivos. Sedimentation of noncolloidal particles at low Reynolds numbers. Annu. Rev. Fluid Mech., 17:91–118, 1985. R.H. Davis and A. Acrivos. Sedimentation of noncolloidal particles at low Reynolds numbers. Annu. Rev. Fluid Mech., 17:91–118, 1985.
Zurück zum Zitat G.L. Dent. Aspects of particle sedimentation in dilute flows at finite Reynolds numbers. PhD thesis, Brown University, 1999. G.L. Dent. Aspects of particle sedimentation in dilute flows at finite Reynolds numbers. PhD thesis, Brown University, 1999.
Zurück zum Zitat D. Di Carlo. Inertial microfluidics. Lab on a Chip, 9:3038–3046, 2009.CrossRef D. Di Carlo. Inertial microfluidics. Lab on a Chip, 9:3038–3046, 2009.CrossRef
Zurück zum Zitat P.G. Drazin and W.H. Reid. Hydrodynamic Stability, 2nd ed. Cambridge University Press, 2004. P.G. Drazin and W.H. Reid. Hydrodynamic Stability, 2nd ed. Cambridge University Press, 2004.
Zurück zum Zitat A.F. Fortes, D.D. Joseph, and T.S. Lundgren. Nonlinear mechanics of fluidization of beds of spherical particles. J. Fluid Mechanics, 177:467–483, 1987.CrossRef A.F. Fortes, D.D. Joseph, and T.S. Lundgren. Nonlinear mechanics of fluidization of beds of spherical particles. J. Fluid Mechanics, 177:467–483, 1987.CrossRef
Zurück zum Zitat R. Gatignol. The Faxén formulas for a rigid particle in an unsteady non-uniform Stokes-flow. Journal de Mécanique Théorique et Appliquée, 1(2):143–160, 1983. R. Gatignol. The Faxén formulas for a rigid particle in an unsteady non-uniform Stokes-flow. Journal de Mécanique Théorique et Appliquée, 1(2):143–160, 1983.
Zurück zum Zitat R. Glowinski, T.-W. Pan, T.I. Hesla, and D.D. Joseph. A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flows, 25:755–794, 1999.MathSciNetCrossRefMATH R. Glowinski, T.-W. Pan, T.I. Hesla, and D.D. Joseph. A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flows, 25:755–794, 1999.MathSciNetCrossRefMATH
Zurück zum Zitat W.W. Grabowski and L.-P. Wang. Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45:293–324, 2013.MathSciNetCrossRefMATH W.W. Grabowski and L.-P. Wang. Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45:293–324, 2013.MathSciNetCrossRefMATH
Zurück zum Zitat É. Guazzelli and J.F. Morris. A Physical Introduction to Suspension Dynamics. Cambridge University Press, New York, 2012.MATH É. Guazzelli and J.F. Morris. A Physical Introduction to Suspension Dynamics. Cambridge University Press, New York, 2012.MATH
Zurück zum Zitat E.J. Hinch. Sedimentation of small particles. In E. Guyon, J.-P. Nadal, and Y. Pomeau, editors, Disorder and Mixing, pages 153–161. Kluwer Academic, 1988. E.J. Hinch. Sedimentation of small particles. In E. Guyon, J.-P. Nadal, and Y. Pomeau, editors, Disorder and Mixing, pages 153–161. Kluwer Academic, 1988.
Zurück zum Zitat H.H. Hu, N.A. Patankar, and M.Y. Zhu. Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J. Comput. Phys., 169:427–462, 2001.MathSciNetCrossRefMATH H.H. Hu, N.A. Patankar, and M.Y. Zhu. Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J. Comput. Phys., 169:427–462, 2001.MathSciNetCrossRefMATH
Zurück zum Zitat R.H.A. Ijzermans, E. Meneguz, and M.W. Reeks. Segregation of particles in incompressible random flows: singularities, intermittency and random uncorrelated motion. J. Fluid Mech., 653:99–136, 2010.CrossRefMATH R.H.A. Ijzermans, E. Meneguz, and M.W. Reeks. Segregation of particles in incompressible random flows: singularities, intermittency and random uncorrelated motion. J. Fluid Mech., 653:99–136, 2010.CrossRefMATH
Zurück zum Zitat G.B. Jeffery. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Royal Soc. London. Series A, 102:161–179, 1922.CrossRefMATH G.B. Jeffery. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Royal Soc. London. Series A, 102:161–179, 1922.CrossRefMATH
Zurück zum Zitat M. Jenny, J. Dušek, and G. Bouchet. Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech., 508:201–239, 2004. M. Jenny, J. Dušek, and G. Bouchet. Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech., 508:201–239, 2004.
Zurück zum Zitat D.H. Kelley and N.T. Ouellette. Onset of three-dimensionality in electromagnetically driven thin-layer flows. Phys. Fluids, 23(4):045103, 2011.CrossRef D.H. Kelley and N.T. Ouellette. Onset of three-dimensionality in electromagnetically driven thin-layer flows. Phys. Fluids, 23(4):045103, 2011.CrossRef
Zurück zum Zitat S. Kim and S.J. Karrila. Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann, Boston, 1991. S. Kim and S.J. Karrila. Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann, Boston, 1991.
Zurück zum Zitat D.L. Koch. Hydrodynamic diffusion in dilute sedimenting suspensions at moderate Reynolds numbers. Phys. Fluids A, 5:1141–1155, 1993. D.L. Koch. Hydrodynamic diffusion in dilute sedimenting suspensions at moderate Reynolds numbers. Phys. Fluids A, 5:1141–1155, 1993.
Zurück zum Zitat C.J. Lawrence and R. Mei. Long-time behaviour of the drag on a body in impulsive motion. J. Fluid Mech., 283:307–327, 1995.MathSciNetCrossRefMATH C.J. Lawrence and R. Mei. Long-time behaviour of the drag on a body in impulsive motion. J. Fluid Mech., 283:307–327, 1995.MathSciNetCrossRefMATH
Zurück zum Zitat Y. Ling, M. Parmar, and S. Balachandar. A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Int. J. Multiphase Flow, 57:102–114, 2013.CrossRef Y. Ling, M. Parmar, and S. Balachandar. A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Int. J. Multiphase Flow, 57:102–114, 2013.CrossRef
Zurück zum Zitat D. Liu. Spectral Element/Force Coupling Method: Application to Colloidal Micro-Devices and Self-Assembled Particle Structures in 3D Domains. PhD thesis, Brown University, 2004. D. Liu. Spectral Element/Force Coupling Method: Application to Colloidal Micro-Devices and Self-Assembled Particle Structures in 3D Domains. PhD thesis, Brown University, 2004.
Zurück zum Zitat D. Liu, M.R. Maxey, and G.E. Karniadakis. A fast method for particulate microflows. J. Microelectromechanical Systems, 11:691–702, 2002.CrossRef D. Liu, M.R. Maxey, and G.E. Karniadakis. A fast method for particulate microflows. J. Microelectromechanical Systems, 11:691–702, 2002.CrossRef
Zurück zum Zitat D. Liu, E.E. Keaveny, M.R. Maxey, and G.E. Karniadakis. Force-coupling method for flows with ellipsoidal particles. J. Comput. Phys, 228:3559–3581, 2009.MathSciNetCrossRefMATH D. Liu, E.E. Keaveny, M.R. Maxey, and G.E. Karniadakis. Force-coupling method for flows with ellipsoidal particles. J. Comput. Phys, 228:3559–3581, 2009.MathSciNetCrossRefMATH
Zurück zum Zitat S. Lomholt and M.R. Maxey. Force-coupling method for particles sedimenting in a channel: Stokes flow. J. Comput. Phys., 184:381–405, 2003.CrossRefMATH S. Lomholt and M.R. Maxey. Force-coupling method for particles sedimenting in a channel: Stokes flow. J. Comput. Phys., 184:381–405, 2003.CrossRefMATH
Zurück zum Zitat S. Lomholt, B. Stenum, and M.R. Maxey. Experimental verification of the force coupling method for particulate flows. Int. J. Multiphase Flow, 28:225–246, 2002.CrossRefMATH S. Lomholt, B. Stenum, and M.R. Maxey. Experimental verification of the force coupling method for particulate flows. Int. J. Multiphase Flow, 28:225–246, 2002.CrossRefMATH
Zurück zum Zitat E. Loth and A. J. Dorgan. An equation of motion for particles of finite Reynolds number and size. Envir. Fluid Mech., 9:187–206, 2009.CrossRef E. Loth and A. J. Dorgan. An equation of motion for particles of finite Reynolds number and size. Envir. Fluid Mech., 9:187–206, 2009.CrossRef
Zurück zum Zitat P.M. Lovalenti and J.F. Brady. The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech., 256:561–605, 1993.MathSciNetCrossRefMATH P.M. Lovalenti and J.F. Brady. The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech., 256:561–605, 1993.MathSciNetCrossRefMATH
Zurück zum Zitat P.M. Lovalenti and J.F. Brady. The temporal behaviour of the hydrodynamic force on a body in response to an abrupt change in velocity at small but finite Reynolds number. J. Fluid Mech., 293:35–46, 1995.CrossRefMATH P.M. Lovalenti and J.F. Brady. The temporal behaviour of the hydrodynamic force on a body in response to an abrupt change in velocity at small but finite Reynolds number. J. Fluid Mech., 293:35–46, 1995.CrossRefMATH
Zurück zum Zitat J. Magnaudet, M. Rivero, and J. Fabre. Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech., 284:97–135, 1995.MathSciNetCrossRefMATH J. Magnaudet, M. Rivero, and J. Fabre. Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech., 284:97–135, 1995.MathSciNetCrossRefMATH
Zurück zum Zitat R. Mallier and M. Maxey. The settling of nonspherical particles in a cellular flow field. Phys. Fluids A, 3:1481–1494, 1991.CrossRefMATH R. Mallier and M. Maxey. The settling of nonspherical particles in a cellular flow field. Phys. Fluids A, 3:1481–1494, 1991.CrossRefMATH
Zurück zum Zitat M. R. Maxey and J. J. Riley. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids, 26:883–889, 1983.CrossRefMATH M. R. Maxey and J. J. Riley. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids, 26:883–889, 1983.CrossRefMATH
Zurück zum Zitat M.R. Maxey. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174:441–465, 1987a.CrossRefMATH M.R. Maxey. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174:441–465, 1987a.CrossRefMATH
Zurück zum Zitat M.R. Maxey. The motion of small spherical particles in a cellular flow field. Phys. Fluids, 30:1915–1928, 1987b.CrossRef M.R. Maxey. The motion of small spherical particles in a cellular flow field. Phys. Fluids, 30:1915–1928, 1987b.CrossRef
Zurück zum Zitat M.R. Maxey and S. Corrsin. Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J. Atmos. Sci., 43:1112–1134, 1986.CrossRef M.R. Maxey and S. Corrsin. Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J. Atmos. Sci., 43:1112–1134, 1986.CrossRef
Zurück zum Zitat M.R. Maxey and B.K. Patel. Localized force representations for particles sedimenting in Stokes flow. Int. J. Multiphase Flow, 27:1603–1626, 2001.CrossRefMATH M.R. Maxey and B.K. Patel. Localized force representations for particles sedimenting in Stokes flow. Int. J. Multiphase Flow, 27:1603–1626, 2001.CrossRefMATH
Zurück zum Zitat J.B. McLaughlin. Inertial migration of a small sphere in linear shear flows. J. Fluid Mech., 224:261–274, 1991.CrossRefMATH J.B. McLaughlin. Inertial migration of a small sphere in linear shear flows. J. Fluid Mech., 224:261–274, 1991.CrossRefMATH
Zurück zum Zitat J.B. McLaughlin. The lift on a small sphere in wall-bounded linear shear flows. J. Fluid Mech., 246:249–265, 1993.CrossRefMATH J.B. McLaughlin. The lift on a small sphere in wall-bounded linear shear flows. J. Fluid Mech., 246:249–265, 1993.CrossRefMATH
Zurück zum Zitat R. Mei and R.J. Adrian. Flow past a sphere with an oscillation in the free-stream and unsteady drag at finite Reynolds number. J. Fluid Mech., 237:323–341, 1992.CrossRefMATH R. Mei and R.J. Adrian. Flow past a sphere with an oscillation in the free-stream and unsteady drag at finite Reynolds number. J. Fluid Mech., 237:323–341, 1992.CrossRefMATH
Zurück zum Zitat R. Mei and R.J. Adrian. Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number. J. Fluid Mech., 270:133–174, 1994.CrossRefMATH R. Mei and R.J. Adrian. Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number. J. Fluid Mech., 270:133–174, 1994.CrossRefMATH
Zurück zum Zitat E. Meiburg and B. Kneller. Turbidity currents and their deposits. Annu. Rev. Fluid Mech., 42:135–156, 2010.CrossRefMATH E. Meiburg and B. Kneller. Turbidity currents and their deposits. Annu. Rev. Fluid Mech., 42:135–156, 2010.CrossRefMATH
Zurück zum Zitat R Monchaux, M. Bourgoin, and A. Cartellier. Analyzing preferential concentration and clustering of inertial particles in turbulence. Int. J. Multiphase Flow, 40:1–18, 2012.CrossRef R Monchaux, M. Bourgoin, and A. Cartellier. Analyzing preferential concentration and clustering of inertial particles in turbulence. Int. J. Multiphase Flow, 40:1–18, 2012.CrossRef
Zurück zum Zitat H. Nicolai, B. Herzhaft, E.J. Hinch, L. Oger, and É. Guazzelli. Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-brownian spheres. Phys. Fluids, 7(1):12–23, 1995.CrossRef H. Nicolai, B. Herzhaft, E.J. Hinch, L. Oger, and É. Guazzelli. Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-brownian spheres. Phys. Fluids, 7(1):12–23, 1995.CrossRef
Zurück zum Zitat C.W. Oseen. Uber die Stokessche formel und uber eine verwandte aufgabe in der hydrodynamik. Ark. Mat. Astron. Fys., 6(29):1–20, 1910.MATH C.W. Oseen. Uber die Stokessche formel und uber eine verwandte aufgabe in der hydrodynamik. Ark. Mat. Astron. Fys., 6(29):1–20, 1910.MATH
Zurück zum Zitat I. Rampall, J.R. Smart, and D.T. Leighton. The influence of surface roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow. J. Fluid Mech., 339:1–24, 1997.CrossRef I. Rampall, J.R. Smart, and D.T. Leighton. The influence of surface roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow. J. Fluid Mech., 339:1–24, 1997.CrossRef
Zurück zum Zitat M Rivero, J Magnaudet, and J Fabre. Quelques résultats nouveaux concernant les forces exercées sur une inclusion sphérique par un écoulement accéléré. Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre, 312(13):1499–1506, 1991.MATH M Rivero, J Magnaudet, and J Fabre. Quelques résultats nouveaux concernant les forces exercées sur une inclusion sphérique par un écoulement accéléré. Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre, 312(13):1499–1506, 1991.MATH
Zurück zum Zitat J. Rubin, C.K.R.T. Jones, and M.R. Maxey. Settling and asymptotic motion of aerosol particles in a cellular flow field. J. Nonlinear Science, 5(4):337–358, 1995.MathSciNetCrossRefMATH J. Rubin, C.K.R.T. Jones, and M.R. Maxey. Settling and asymptotic motion of aerosol particles in a cellular flow field. J. Nonlinear Science, 5(4):337–358, 1995.MathSciNetCrossRefMATH
Zurück zum Zitat S.I. Rubinow and J.B. Keller. The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech., 11(03):447–459, 1961.MathSciNetCrossRefMATH S.I. Rubinow and J.B. Keller. The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech., 11(03):447–459, 1961.MathSciNetCrossRefMATH
Zurück zum Zitat P. G. Saffman. The lift on a small sphere in a slow shear flow. J. Fluid Mech., 22:385–400, 1965.CrossRefMATH P. G. Saffman. The lift on a small sphere in a slow shear flow. J. Fluid Mech., 22:385–400, 1965.CrossRefMATH
Zurück zum Zitat T. Sano. Unsteady flow past a sphere at low Reynolds number. J. Fluid Mech., 112:433–441, 1981.CrossRefMATH T. Sano. Unsteady flow past a sphere at low Reynolds number. J. Fluid Mech., 112:433–441, 1981.CrossRefMATH
Zurück zum Zitat H. Shin and M.R. Maxey. Chaotic motion of nonspherical particles settling in a cellular flow field. Phys. Rev. E, 56:5431–5444, 1997.CrossRef H. Shin and M.R. Maxey. Chaotic motion of nonspherical particles settling in a cellular flow field. Phys. Rev. E, 56:5431–5444, 1997.CrossRef
Zurück zum Zitat A. Sierou and J. F. Brady. Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol., 46:1031–1056, 2002.CrossRef A. Sierou and J. F. Brady. Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol., 46:1031–1056, 2002.CrossRef
Zurück zum Zitat H. Stommel. Trajectories of small bodies sinking slowly through convection cells. J. Marine Res., 8:24–29, 1949. H. Stommel. Trajectories of small bodies sinking slowly through convection cells. J. Marine Res., 8:24–29, 1949.
Zurück zum Zitat G.I. Taylor and A.E. Green. Mechanism of the production of small eddies from large ones. Proc. Royal Soc. London. Series A, 158(895):499–521, 1937.CrossRefMATH G.I. Taylor and A.E. Green. Mechanism of the production of small eddies from large ones. Proc. Royal Soc. London. Series A, 158(895):499–521, 1937.CrossRefMATH
Zurück zum Zitat A.G. Tomboulides and S.A. Orszag. Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech., 416:45–73, 2000.MathSciNetCrossRefMATH A.G. Tomboulides and S.A. Orszag. Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech., 416:45–73, 2000.MathSciNetCrossRefMATH
Zurück zum Zitat M. Uhlmann. An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Physics, 209:448–476, 2005.MathSciNetCrossRefMATH M. Uhlmann. An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Physics, 209:448–476, 2005.MathSciNetCrossRefMATH
Zurück zum Zitat M. A. T. van Hinsberg, J. H. M. ten Thije Boonkkamp, and H. J. H. Clercx. An efficient, second order method for the approximation of the Basset history force. J. Comput. Phys., 230:1465–1478, 2011.CrossRefMATH M. A. T. van Hinsberg, J. H. M. ten Thije Boonkkamp, and H. J. H. Clercx. An efficient, second order method for the approximation of the Basset history force. J. Comput. Phys., 230:1465–1478, 2011.CrossRefMATH
Zurück zum Zitat L.-P. Wang and M.R. Maxey. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 256:27–68, 1993.CrossRef L.-P. Wang and M.R. Maxey. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 256:27–68, 1993.CrossRef
Zurück zum Zitat M. Wilkinson, B. Mehlig, S. Östlund, and K.P. Duncan. Unmixing in random flows. Phys. Fluids, 19(11):113303, 2007.CrossRefMATH M. Wilkinson, B. Mehlig, S. Östlund, and K.P. Duncan. Unmixing in random flows. Phys. Fluids, 19(11):113303, 2007.CrossRefMATH
Zurück zum Zitat K. Yeo and M.R. Maxey. Simulation of concentrated suspensions using the force-coupling method. J. Comput. Phys., 229:2401–2421, 2010a.MathSciNetCrossRefMATH K. Yeo and M.R. Maxey. Simulation of concentrated suspensions using the force-coupling method. J. Comput. Phys., 229:2401–2421, 2010a.MathSciNetCrossRefMATH
Zurück zum Zitat K. Yeo and M.R. Maxey. Dynamics of concentrated suspensions of non-colloidal particles in Couette flow. J. Fluid Mech., 649:205–231, 2010b.MathSciNetCrossRefMATH K. Yeo and M.R. Maxey. Dynamics of concentrated suspensions of non-colloidal particles in Couette flow. J. Fluid Mech., 649:205–231, 2010b.MathSciNetCrossRefMATH
Zurück zum Zitat K. Yeo and M.R. Maxey. Ordering transition of concentrated suspensions of non-Brownian particles in a confined steady shear flow. Phys. Rev. E, 81:051502, 2010c. K. Yeo and M.R. Maxey. Ordering transition of concentrated suspensions of non-Brownian particles in a confined steady shear flow. Phys. Rev. E, 81:051502, 2010c.
Zurück zum Zitat K. Yeo and M.R. Maxey. Numerical simulations of concentrated suspensions of monodisperse particles in a Poiseuille flow. J. Fluid Mech., 682:491–518, 2011.CrossRefMATH K. Yeo and M.R. Maxey. Numerical simulations of concentrated suspensions of monodisperse particles in a Poiseuille flow. J. Fluid Mech., 682:491–518, 2011.CrossRefMATH
Zurück zum Zitat K. Yeo and M.R. Maxey. Dynamics and rheology of concentrated, finite-Reynolds-number suspensions in a homogeneous shear flow. Phys. Fluids, 25:053303, 2013.CrossRef K. Yeo and M.R. Maxey. Dynamics and rheology of concentrated, finite-Reynolds-number suspensions in a homogeneous shear flow. Phys. Fluids, 25:053303, 2013.CrossRef
Zurück zum Zitat X. Yin and D.L. Koch. Hindered settling velocity and microstructure in suspensions of solid spheres with moderate Reynolds numbers. Phys. Fluids, 19:093302, 2007. X. Yin and D.L. Koch. Hindered settling velocity and microstructure in suspensions of solid spheres with moderate Reynolds numbers. Phys. Fluids, 19:093302, 2007.
Metadaten
Titel
Modeling and Simulation of Discrete Particles in Fluid Flow
verfasst von
Martin R. Maxey
Gelonia L. Dent
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51226-6_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.