Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2019

08.07.2019

Modeling grid fields instead of modeling grid cells

An effective model at the macroscopic level and its relationship with the underlying microscopic neural system

verfasst von: Sophie Rosay, Simon Weber, Marcello Mulas

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A neuron’s firing correlates are defined as the features of the external world to which its activity is correlated. In many parts of the brain, neurons have quite simple such firing correlates. A striking example are grid cells in the rodent medial entorhinal cortex: their activity correlates with the animal’s position in space, defining ‘grid fields’ arranged with a remarkable periodicity. Here, we show that the organization and evolution of grid fields relate very simply to physical space. To do so, we use an effective model and consider grid fields as point objects (particles) moving around in space under the influence of forces. We reproduce several observations on the geometry of grid patterns. This particle-like behavior is particularly salient in a recent experiment in which two separate grid patterns merge. We discuss pattern formation in the light of known results from physics of two-dimensional colloidal systems. Notably, we study the limitations of the widely used ‘gridness score’ and show how physics of 2d systems could be a source of inspiration, both for data analysis and computational modeling. Finally, we draw the relationship between our ‘macroscopic’ model for grid fields and existing ‘microscopic’ models of grid cell activity and discuss how a description at the level of grid fields allows to put constraints on the underlying grid cell network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Grid patterns with non homogeneous orientation have been shown by Stensola et al. (2015) but, in the absence of a local measure, could not be quantified.
 
2
Some slight differences, either of spacing or orientation, have been reported, but we neglect them for the present discussion.
 
3
A question not answered by this experiment is whether this position is fixed with respect to the walls or with respect to something else, e.g., distal cues.
 
4
Near the walls some grid distortion could come into play as we have shown, but let us assume here that the box is big enough so that we can neglect such edge effects.
 
5
So this model differs from the place cell case only by its boundary conditions (Spalla et al. 2019)
 
Literatur
Zurück zum Zitat Alekseĭ, A.A., Gorkov, L.P., Dzyaloshinski, I.E. (2012). Methods of quantum field theory in statistical physics. Courier Corporation. Alekseĭ, A.A., Gorkov, L.P., Dzyaloshinski, I.E. (2012). Methods of quantum field theory in statistical physics. Courier Corporation.
Zurück zum Zitat Barry, C., Hayman, R., Burgess, N., Jeffery, K.J. (2007). Experience-dependent rescaling of entorhinal grids. Nature Neuroscience, 10(6), 682.CrossRefPubMed Barry, C., Hayman, R., Burgess, N., Jeffery, K.J. (2007). Experience-dependent rescaling of entorhinal grids. Nature Neuroscience, 10(6), 682.CrossRefPubMed
Zurück zum Zitat Berezinskii, V. (1971). Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group i. classical systems. Soviet Physics - JETP, 32(3), 493–500. Berezinskii, V. (1971). Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group i. classical systems. Soviet Physics - JETP, 32(3), 493–500.
Zurück zum Zitat Blair, H.T., Welday, A.C., Zhang, K. (2007). Scale-invariant memory representations emerge from moire interference between grid fields that produce theta oscillations: a computational model. Journal of Neuroscience, 27 (12), 3211–3229.CrossRefPubMed Blair, H.T., Welday, A.C., Zhang, K. (2007). Scale-invariant memory representations emerge from moire interference between grid fields that produce theta oscillations: a computational model. Journal of Neuroscience, 27 (12), 3211–3229.CrossRefPubMed
Zurück zum Zitat Boccara, C., Stella, F., Nardin, M., O’neill, J, Csicsvari, J. (2016). Goal remapping in grid cells. In: fENS Conference. Boccara, C., Stella, F., Nardin, M., O’neill, J, Csicsvari, J. (2016). Goal remapping in grid cells. In: fENS Conference.
Zurück zum Zitat Bonnevie, T., Dunn, B., Fyhn, M., Hafting, T., Derdikman, D., Kubie, J.L., Roudi, Y., Moser, E.I., Moser, M.B. (2013). Grid cells require excitatory drive from the hippocampus. Nature Neuroscience, 16(3), 309–317.CrossRefPubMed Bonnevie, T., Dunn, B., Fyhn, M., Hafting, T., Derdikman, D., Kubie, J.L., Roudi, Y., Moser, E.I., Moser, M.B. (2013). Grid cells require excitatory drive from the hippocampus. Nature Neuroscience, 16(3), 309–317.CrossRefPubMed
Zurück zum Zitat Burak, Y., & Fiete, I.R. (2009). Accurate path integration in continuous attractor network models of grid cells. PLoS Computational Biology, 5(2), e1000291.CrossRefPubMedPubMedCentral Burak, Y., & Fiete, I.R. (2009). Accurate path integration in continuous attractor network models of grid cells. PLoS Computational Biology, 5(2), e1000291.CrossRefPubMedPubMedCentral
Zurück zum Zitat Carpenter, F., Manson, D., Jeffery, K., Burgess, N., Barry, C. (2015). Grid cells form a global representation of connected environments. Current Biology, 25(9), 1176–1182.CrossRefPubMedPubMedCentral Carpenter, F., Manson, D., Jeffery, K., Burgess, N., Barry, C. (2015). Grid cells form a global representation of connected environments. Current Biology, 25(9), 1176–1182.CrossRefPubMedPubMedCentral
Zurück zum Zitat Couey, J.J., Witoelar, A., Zhang, S.J., Zheng, K., Ye, J., Dunn, B., Czajkowski, R., Moser, M.B., Moser, E.I., Roudi, Y., et al. (2013). Recurrent inhibitory circuitry as a mechanism for grid formation. Nature Neuroscience, 16(3), 318–324.CrossRefPubMed Couey, J.J., Witoelar, A., Zhang, S.J., Zheng, K., Ye, J., Dunn, B., Czajkowski, R., Moser, M.B., Moser, E.I., Roudi, Y., et al. (2013). Recurrent inhibitory circuitry as a mechanism for grid formation. Nature Neuroscience, 16(3), 318–324.CrossRefPubMed
Zurück zum Zitat Derdikman, D., Whitlock, J.R., Tsao, A., Fyhn, M., Hafting, T., Moser, M.B., Moser, E.I. (2009). Fragmentation of grid cell maps in a multicompartment environment. Nature neuroscience, 12(10), 1325–1332.CrossRefPubMed Derdikman, D., Whitlock, J.R., Tsao, A., Fyhn, M., Hafting, T., Moser, M.B., Moser, E.I. (2009). Fragmentation of grid cell maps in a multicompartment environment. Nature neuroscience, 12(10), 1325–1332.CrossRefPubMed
Zurück zum Zitat Dunn, B., Wennberg, D., Huang, Z., Roudi, Y. (2017). Grid cells show field-to-field variability and this explains the aperiodic response of inhibitory interneurons. arXiv:170104893. Dunn, B., Wennberg, D., Huang, Z., Roudi, Y. (2017). Grid cells show field-to-field variability and this explains the aperiodic response of inhibitory interneurons. arXiv:170104893.
Zurück zum Zitat Fuhs, M.C., & Touretzky, D.S. (2006). A spin glass model of path integration in rat medial entorhinal cortex. Journal of Neuroscience, 26(16), 4266–4276.CrossRefPubMed Fuhs, M.C., & Touretzky, D.S. (2006). A spin glass model of path integration in rat medial entorhinal cortex. Journal of Neuroscience, 26(16), 4266–4276.CrossRefPubMed
Zurück zum Zitat Fyhn, M., & et al. (2004). Spatial representation in the entorhinal cortex. Science, 305(5688), 1258.CrossRefPubMed Fyhn, M., & et al. (2004). Spatial representation in the entorhinal cortex. Science, 305(5688), 1258.CrossRefPubMed
Zurück zum Zitat Giocomo, L.M., Zilli, E.A., Fransén, E., Hasselmo, M.E. (2007). Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science, 315(5819), 1719–1722.CrossRefPubMedPubMedCentral Giocomo, L.M., Zilli, E.A., Fransén, E., Hasselmo, M.E. (2007). Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science, 315(5819), 1719–1722.CrossRefPubMedPubMedCentral
Zurück zum Zitat Guanella, A., Kiper, D., Verschure, P. (2007). A model of grid cells based on a twisted torus topology. International journal of neural systems, 17(04), 231–240.CrossRefPubMed Guanella, A., Kiper, D., Verschure, P. (2007). A model of grid cells based on a twisted torus topology. International journal of neural systems, 17(04), 231–240.CrossRefPubMed
Zurück zum Zitat Hafting, T., Fyhn, M., Bonnevie, T., Moser, M.B., Moser, E.I. (2008). Hippocampus-independent phase precession in entorhinal grid cells. Nature, 453(7199), 1248.CrossRefPubMed Hafting, T., Fyhn, M., Bonnevie, T., Moser, M.B., Moser, E.I. (2008). Hippocampus-independent phase precession in entorhinal grid cells. Nature, 453(7199), 1248.CrossRefPubMed
Zurück zum Zitat Hafting, T., & et al. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801–806.CrossRefPubMed Hafting, T., & et al. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801–806.CrossRefPubMed
Zurück zum Zitat Hägglund, M. (2017). Distortions and development of local spatial features of the grid, spring Hippocampal Research Conference. Hägglund, M. (2017). Distortions and development of local spatial features of the grid, spring Hippocampal Research Conference.
Zurück zum Zitat Halperin, B., & Nelson, D.R. (1978). Theory of two-dimensional melting. Physical Review Letters, 41(2), 121.CrossRef Halperin, B., & Nelson, D.R. (1978). Theory of two-dimensional melting. Physical Review Letters, 41(2), 121.CrossRef
Zurück zum Zitat Hardcastle, K., Ganguli, S., Giocomo, L.M. (2015). Environmental boundaries as an error correction mechanism for grid cells. Neuron, 86(3), 827–839.CrossRefPubMed Hardcastle, K., Ganguli, S., Giocomo, L.M. (2015). Environmental boundaries as an error correction mechanism for grid cells. Neuron, 86(3), 827–839.CrossRefPubMed
Zurück zum Zitat Hasselmo, M.E., Giocomo, L.M., Zilli, E.A. (2007). Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampus, 17(12), 1252–1271.CrossRefPubMedPubMedCentral Hasselmo, M.E., Giocomo, L.M., Zilli, E.A. (2007). Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampus, 17(12), 1252–1271.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kosterlitz, J.M., & Thouless, D.J. (1973). Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C:, Solid State Physics, 6(7), 1181.CrossRef Kosterlitz, J.M., & Thouless, D.J. (1973). Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C:, Solid State Physics, 6(7), 1181.CrossRef
Zurück zum Zitat Kropff, E., & Treves, A. (2008). The emergence of grid cells: Intelligent design or just adaptation? Hippocampus, 18(12), 1256–1269.CrossRefPubMed Kropff, E., & Treves, A. (2008). The emergence of grid cells: Intelligent design or just adaptation? Hippocampus, 18(12), 1256–1269.CrossRefPubMed
Zurück zum Zitat Krupic, J., Bauza, M., Burton, S., Lever, C., O’Keefe, J. (2014). How environment geometry affects grid cell symmetry and what we can learn from it. Philosophical Transactions of the Royal Society B, 369(1635), 20130188.CrossRef Krupic, J., Bauza, M., Burton, S., Lever, C., O’Keefe, J. (2014). How environment geometry affects grid cell symmetry and what we can learn from it. Philosophical Transactions of the Royal Society B, 369(1635), 20130188.CrossRef
Zurück zum Zitat Krupic, J., Bauza, M., Burton, S., Barry, C., O’Keefe, J. (2015). Grid cell symmetry is shaped by environmental geometry. Nature, 518(7538), 232–235.CrossRefPubMedPubMedCentral Krupic, J., Bauza, M., Burton, S., Barry, C., O’Keefe, J. (2015). Grid cell symmetry is shaped by environmental geometry. Nature, 518(7538), 232–235.CrossRefPubMedPubMedCentral
Zurück zum Zitat Langston, R.F., Ainge, J.A., Couey, J.J., Canto, C.B., Bjerknes, T.L., Witter, M.P., Moser, E.I., Moser, M.B. (2010). Development of the spatial representation system in the rat. Science, 328(5985), 1576–1580.CrossRefPubMed Langston, R.F., Ainge, J.A., Couey, J.J., Canto, C.B., Bjerknes, T.L., Witter, M.P., Moser, E.I., Moser, M.B. (2010). Development of the spatial representation system in the rat. Science, 328(5985), 1576–1580.CrossRefPubMed
Zurück zum Zitat Manoharan, V.N. (2015). Colloidal matter: Packing, geometry, and entropy. Science, 349(6251), 1253751.CrossRef Manoharan, V.N. (2015). Colloidal matter: Packing, geometry, and entropy. Science, 349(6251), 1253751.CrossRef
Zurück zum Zitat McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.B. (2006). Path integration and the neural basis of the’cognitive map’. Nature reviews Neuroscience, 7(8), 663.CrossRefPubMed McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.B. (2006). Path integration and the neural basis of the’cognitive map’. Nature reviews Neuroscience, 7(8), 663.CrossRefPubMed
Zurück zum Zitat Merrill, D.A., Chiba, A.A., Tuszynski, M.H. (2001). Conservation of neuronal number and size in the entorhinal cortex of behaviorally characterized aged rats. Journal of Comparative Neurology, 438(4), 445–456.CrossRefPubMed Merrill, D.A., Chiba, A.A., Tuszynski, M.H. (2001). Conservation of neuronal number and size in the entorhinal cortex of behaviorally characterized aged rats. Journal of Comparative Neurology, 438(4), 445–456.CrossRefPubMed
Zurück zum Zitat Monasson, R., & Rosay, S. (2014). Crosstalk and transitions between multiple spatial maps in an attractor neural network model of the hippocampus: Collective motion of the activity. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 89(3-1), 032803–032803.CrossRefPubMed Monasson, R., & Rosay, S. (2014). Crosstalk and transitions between multiple spatial maps in an attractor neural network model of the hippocampus: Collective motion of the activity. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 89(3-1), 032803–032803.CrossRefPubMed
Zurück zum Zitat Ocko, S.A., Hardcastle, K., Giocomo, L.M., Ganguli, S. (2018). Emergent elasticity in the neural code for space. Proceedings of the National Academy of Sciences, 115(50), E11798–E11806.CrossRef Ocko, S.A., Hardcastle, K., Giocomo, L.M., Ganguli, S. (2018). Emergent elasticity in the neural code for space. Proceedings of the National Academy of Sciences, 115(50), E11798–E11806.CrossRef
Zurück zum Zitat Pastoll, H., Solanka, L., van Rossum, M.C., Nolan, M.F. (2013). Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron, 77(1), 141–154.CrossRefPubMed Pastoll, H., Solanka, L., van Rossum, M.C., Nolan, M.F. (2013). Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron, 77(1), 141–154.CrossRefPubMed
Zurück zum Zitat Peierls, R. (1935). Quelques propriétés typiques des corps solides. Ann IH Poincare, 5, 177–222. Peierls, R. (1935). Quelques propriétés typiques des corps solides. Ann IH Poincare, 5, 177–222.
Zurück zum Zitat Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B.L., Witter, M.P., Moser, M.B., Moser, E.I. (2006). Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science, 312(5774), 758–762.CrossRefPubMed Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B.L., Witter, M.P., Moser, M.B., Moser, E.I. (2006). Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science, 312(5774), 758–762.CrossRefPubMed
Zurück zum Zitat Si, B., & Treves, A. (2013). A model for the differentiation between grid and conjunctive units in medial entorhinal cortex. Hippocampus, 23(12), 1410–1424.CrossRefPubMed Si, B., & Treves, A. (2013). A model for the differentiation between grid and conjunctive units in medial entorhinal cortex. Hippocampus, 23(12), 1410–1424.CrossRefPubMed
Zurück zum Zitat Si, B., Kropff, E., Treves, A. (2012). Grid alignment in entorhinal cortex. Biological cybernetics, pp 1–24. Si, B., Kropff, E., Treves, A. (2012). Grid alignment in entorhinal cortex. Biological cybernetics, pp 1–24.
Zurück zum Zitat Solstad, T., Boccara, C.N., Kropff, E., Moser, M.B., Moser, E.I. (2008). Representation of geometric borders in the entorhinal cortex. Science, 322(5909), 1865–1868.CrossRefPubMed Solstad, T., Boccara, C.N., Kropff, E., Moser, M.B., Moser, E.I. (2008). Representation of geometric borders in the entorhinal cortex. Science, 322(5909), 1865–1868.CrossRefPubMed
Zurück zum Zitat Spalla, D., Dubreuil, A., Rosay, S., Monasson, R., Treves, A. (2019). Can grid cell ensembles represent multiple spaces? submitted. Spalla, D., Dubreuil, A., Rosay, S., Monasson, R., Treves, A. (2019). Can grid cell ensembles represent multiple spaces? submitted.
Zurück zum Zitat Sprekeler, H. (2008). Slowness learning: Mathematical approaches and synaptic mechanisms. PhD thesis, Berlin, Humboldt-Univ. Sprekeler, H. (2008). Slowness learning: Mathematical approaches and synaptic mechanisms. PhD thesis, Berlin, Humboldt-Univ.
Zurück zum Zitat Stella, F., Si, B., Kropff, E., Treves, A. (2013). Grid cells on the ball. Journal of Statistical Mechanics:, Theory and Experiment, 2013(03), P03013.CrossRef Stella, F., Si, B., Kropff, E., Treves, A. (2013). Grid cells on the ball. Journal of Statistical Mechanics:, Theory and Experiment, 2013(03), P03013.CrossRef
Zurück zum Zitat Stensola, H., Stensola, T., Solstad, T., Frøland, K., Moser, M.B., Moser, E.I. (2012). The entorhinal grid map is discretized. Nature, 492(7427), 72–78.CrossRefPubMed Stensola, H., Stensola, T., Solstad, T., Frøland, K., Moser, M.B., Moser, E.I. (2012). The entorhinal grid map is discretized. Nature, 492(7427), 72–78.CrossRefPubMed
Zurück zum Zitat Stensola, T., Stensola, H., Moser, M.B., Moser, E.I. (2015). Shearing-induced asymmetry in entorhinal grid cells. Nature, 518(7538), 207–212.CrossRefPubMed Stensola, T., Stensola, H., Moser, M.B., Moser, E.I. (2015). Shearing-induced asymmetry in entorhinal grid cells. Nature, 518(7538), 207–212.CrossRefPubMed
Zurück zum Zitat Urdapilleta, E., Troiani, F., Stella, F., Treves, A. (2015). Can rodents conceive hyperbolic spaces? Journal of the Royal Society Interface, 12(107), 20141214.CrossRefPubMedCentral Urdapilleta, E., Troiani, F., Stella, F., Treves, A. (2015). Can rodents conceive hyperbolic spaces? Journal of the Royal Society Interface, 12(107), 20141214.CrossRefPubMedCentral
Zurück zum Zitat Weber, S.N., & Sprekeler, H. (2018). Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity. eLife, 7, e34560.CrossRefPubMedPubMedCentral Weber, S.N., & Sprekeler, H. (2018). Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity. eLife, 7, e34560.CrossRefPubMedPubMedCentral
Zurück zum Zitat Weber, S.N., & Sprekeler, H. (2019). A local measure of symmetry and orientation for individual spikes of grid cells. PLoS Computational Biology, 15(2), e1006804.CrossRefPubMedPubMedCentral Weber, S.N., & Sprekeler, H. (2019). A local measure of symmetry and orientation for individual spikes of grid cells. PLoS Computational Biology, 15(2), e1006804.CrossRefPubMedPubMedCentral
Zurück zum Zitat Wernle, T., Waaga, T., Mørreaunet, M., Treves, A., Moser, M.B., Moser, E.I. (2018). Integration of grid maps in merged environments. Nature Neuroscience, 21(1), 92.CrossRefPubMed Wernle, T., Waaga, T., Mørreaunet, M., Treves, A., Moser, M.B., Moser, E.I. (2018). Integration of grid maps in merged environments. Nature Neuroscience, 21(1), 92.CrossRefPubMed
Zurück zum Zitat Widloski, J., & Fiete, I.R. (2014). A model of grid cell development through spatial exploration and spike time-dependent plasticity. Neuron, 83(2), 481–495.CrossRefPubMed Widloski, J., & Fiete, I.R. (2014). A model of grid cell development through spatial exploration and spike time-dependent plasticity. Neuron, 83(2), 481–495.CrossRefPubMed
Zurück zum Zitat Yartsev, M.M., Witter, M.P., Ulanovsky, N. (2011). Grid cells without theta oscillations in the entorhinal cortex of bats. Nature, 479(7371), 103.CrossRefPubMed Yartsev, M.M., Witter, M.P., Ulanovsky, N. (2011). Grid cells without theta oscillations in the entorhinal cortex of bats. Nature, 479(7371), 103.CrossRefPubMed
Zurück zum Zitat Yoon, K., Buice, M.A., Barry, C., Hayman, R., Burgess, N., Fiete, I.R. (2013). Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nature Neuroscience, 16(8), 1077.CrossRefPubMedPubMedCentral Yoon, K., Buice, M.A., Barry, C., Hayman, R., Burgess, N., Fiete, I.R. (2013). Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nature Neuroscience, 16(8), 1077.CrossRefPubMedPubMedCentral
Metadaten
Titel
Modeling grid fields instead of modeling grid cells
An effective model at the macroscopic level and its relationship with the underlying microscopic neural system
verfasst von
Sophie Rosay
Simon Weber
Marcello Mulas
Publikationsdatum
08.07.2019
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2019
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-019-00722-8

Weitere Artikel der Ausgabe 1/2019

Journal of Computational Neuroscience 1/2019 Zur Ausgabe