Skip to main content

2017 | OriginalPaper | Buchkapitel

Modeling Neuron-Astrocyte Interactions: Towards Understanding Synaptic Plasticity and Learning in the Brain

verfasst von : Riikka Havela, Tiina Manninen, Ausra Saudargiene, Marja-Leena Linne

Erschienen in: Intelligent Computing Theories and Application

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spiking neural networks represent a third generation of artificial neural networks and are inspired by computational principles of neurons and synapses in the brain. In addition to neuronal mechanisms, astrocytic signaling can influence information transmission, plasticity and learning in the brain. In this study, we developed a new computational model to better understand the dynamics of mechanisms that lead to changes in information processing between a postsynaptic neuron and an astrocyte. We used a classical stimulation protocol of long-term plasticity to test the model functionality. The long-term goal of our work is to develop extended synapse models including neuron-astrocyte interactions to address plasticity and learning in cortical synapses. Our modeling studies will advance the development of novel learning algorithms to be used in the extended synapse models and spiking neural networks. The novel algorithms can provide a basis for artificial intelligence systems that can emulate the functionality of mammalian brain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C., Nelson, S.B.: Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391(6670), 892–896 (1998)CrossRef Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C., Nelson, S.B.: Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391(6670), 892–896 (1998)CrossRef
2.
Zurück zum Zitat Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949) Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)
3.
Zurück zum Zitat Lømo, T.: Frequency potentiation of excitatory synaptic activity in dentate area of hippocampal formation. Acta Physiol. Scand. 68(Suppl 277), 128 (1966) Lømo, T.: Frequency potentiation of excitatory synaptic activity in dentate area of hippocampal formation. Acta Physiol. Scand. 68(Suppl 277), 128 (1966)
4.
Zurück zum Zitat Bliss, T.V., Lømo, T.: Plasticity in a monosynaptic cortical pathway. J. Physiol. 207(2), 61P (1970) Bliss, T.V., Lømo, T.: Plasticity in a monosynaptic cortical pathway. J. Physiol. 207(2), 61P (1970)
5.
Zurück zum Zitat Bliss, T.V.P., Lømo, T.: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232(2), 331–356 (1973)CrossRef Bliss, T.V.P., Lømo, T.: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232(2), 331–356 (1973)CrossRef
6.
Zurück zum Zitat Douglas, R.M., Goddard, G.V.: Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Res. 86(2), 205–215 (1975)CrossRef Douglas, R.M., Goddard, G.V.: Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Res. 86(2), 205–215 (1975)CrossRef
8.
Zurück zum Zitat Willshaw, D.J., Buneman, O.P., Longuet-Higgins, H.C.: Non-holographic associative memory. Nature 222, 960–962 (1969)CrossRef Willshaw, D.J., Buneman, O.P., Longuet-Higgins, H.C.: Non-holographic associative memory. Nature 222, 960–962 (1969)CrossRef
9.
Zurück zum Zitat Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. C-21(4), 353–359 (1972)CrossRefMATH Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. C-21(4), 353–359 (1972)CrossRefMATH
10.
Zurück zum Zitat Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79(8), 2554–2558 (1982)MathSciNetCrossRef Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79(8), 2554–2558 (1982)MathSciNetCrossRef
11.
Zurück zum Zitat Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297), 213–215 (1997)CrossRef Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297), 213–215 (1997)CrossRef
12.
Zurück zum Zitat Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998) Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)
13.
Zurück zum Zitat Bi, G.Q., Poo, M.M.: Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24(1), 139–166 (2001)CrossRef Bi, G.Q., Poo, M.M.: Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24(1), 139–166 (2001)CrossRef
14.
Zurück zum Zitat Golding, N.L., Staff, N.P., Spruston, N.: Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418(6895), 326–331 (2002)CrossRef Golding, N.L., Staff, N.P., Spruston, N.: Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418(6895), 326–331 (2002)CrossRef
15.
Zurück zum Zitat Häusser, M., Mel, B.: Dendrites: bug or feature? Curr. Opin. Neurobiol. 13(3), 372–383 (2003)CrossRef Häusser, M., Mel, B.: Dendrites: bug or feature? Curr. Opin. Neurobiol. 13(3), 372–383 (2003)CrossRef
16.
Zurück zum Zitat Froemke, R.C., Letzkus, J.J., Kampa, B.M., Hang, G.B., Stuart, G.J.: Dendritic synapse location and neocortical spike-timing-dependent plasticity. Front. Syn. Neurosci. 2, 29 (2010) Froemke, R.C., Letzkus, J.J., Kampa, B.M., Hang, G.B., Stuart, G.J.: Dendritic synapse location and neocortical spike-timing-dependent plasticity. Front. Syn. Neurosci. 2, 29 (2010)
17.
Zurück zum Zitat Letzkus, J.J., Kampa, B.M., Stuart, G.J.: Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J. Neurosci. 26(41), 10420–10429 (2006)CrossRef Letzkus, J.J., Kampa, B.M., Stuart, G.J.: Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J. Neurosci. 26(41), 10420–10429 (2006)CrossRef
18.
Zurück zum Zitat Sjöström, P.J., Rancz, E.A., Roth, A., Häusser, M.: Dendritic excitability and synaptic plasticity. Physiol. Rev. 88(2), 769–840 (2008)CrossRef Sjöström, P.J., Rancz, E.A., Roth, A., Häusser, M.: Dendritic excitability and synaptic plasticity. Physiol. Rev. 88(2), 769–840 (2008)CrossRef
19.
Zurück zum Zitat Wittenberg, G.M., Wang, S.S.H.: Malleability of spike-timing-dependent plasticity at the CA3–CA1 synapse. J. Neurosci. 26(24), 6610–6617 (2006)CrossRef Wittenberg, G.M., Wang, S.S.H.: Malleability of spike-timing-dependent plasticity at the CA3–CA1 synapse. J. Neurosci. 26(24), 6610–6617 (2006)CrossRef
20.
Zurück zum Zitat Buchanan, K.A., Mellor, J.R.: The activity requirements for spike timing-dependent plasticity in the hippocampus. Front. Syn. Neurosci. 2, 11 (2010)CrossRef Buchanan, K.A., Mellor, J.R.: The activity requirements for spike timing-dependent plasticity in the hippocampus. Front. Syn. Neurosci. 2, 11 (2010)CrossRef
21.
Zurück zum Zitat Volterra, A., Liaudet, N., Savtchouk, I.: Astrocyte Ca2+ signalling: an unexpected complexity. Nat. Rev. Neurosci. 15(5), 327–335 (2014)CrossRef Volterra, A., Liaudet, N., Savtchouk, I.: Astrocyte Ca2+ signalling: an unexpected complexity. Nat. Rev. Neurosci. 15(5), 327–335 (2014)CrossRef
22.
Zurück zum Zitat Magistretti, P.J., Allaman, I.: A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4), 883–901 (2015)CrossRef Magistretti, P.J., Allaman, I.: A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4), 883–901 (2015)CrossRef
23.
Zurück zum Zitat Dossi, E., Vasile, F., Rouach, N.: Human astrocytes in the diseased brain. Brain Res. Bull. (2017, in Press) Dossi, E., Vasile, F., Rouach, N.: Human astrocytes in the diseased brain. Brain Res. Bull. (2017, in Press)
24.
Zurück zum Zitat De Pittà, M., Brunel, N.: Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plast. 2016, 7607924 (2016)CrossRef De Pittà, M., Brunel, N.: Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plast. 2016, 7607924 (2016)CrossRef
25.
Zurück zum Zitat Bushong, E.A., Martone, M.E., Jones, Y.Z., Ellisman, M.H.: Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22(1), 183–192 (2002) Bushong, E.A., Martone, M.E., Jones, Y.Z., Ellisman, M.H.: Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22(1), 183–192 (2002)
26.
Zurück zum Zitat Pirttimaki, T.M., Hall, S.D., Parri, H.R.: Sustained neuronal activity generated by glial plasticity. J. Neurosci. 31(21), 7637–7647 (2011)CrossRef Pirttimaki, T.M., Hall, S.D., Parri, H.R.: Sustained neuronal activity generated by glial plasticity. J. Neurosci. 31(21), 7637–7647 (2011)CrossRef
27.
Zurück zum Zitat Manninen, T., Havela, R., Linne, M.L.: Computational models of astrocytes and astrocyte-neuron interactions: characterization, reproducibility, and future perspectives. In: De Pittà, M., Berry, H. (eds.) Computational Glioscience. Springer (2017, in Press) Manninen, T., Havela, R., Linne, M.L.: Computational models of astrocytes and astrocyte-neuron interactions: characterization, reproducibility, and future perspectives. In: De Pittà, M., Berry, H. (eds.) Computational Glioscience. Springer (2017, in Press)
28.
Zurück zum Zitat Manninen, T., Havela, R., Linne, M.L.: Reproducibility and comparability of computational models for astrocyte calcium excitability. Front. Neuroinform. 11, 11 (2017)CrossRef Manninen, T., Havela, R., Linne, M.L.: Reproducibility and comparability of computational models for astrocyte calcium excitability. Front. Neuroinform. 11, 11 (2017)CrossRef
29.
Zurück zum Zitat Tewari, S., Majumdar, K.: A mathematical model for astrocytes mediated LTP at single hippocampal synapses. J. Comput. Neurosci. 33(2), 341–370 (2012)MathSciNetCrossRef Tewari, S., Majumdar, K.: A mathematical model for astrocytes mediated LTP at single hippocampal synapses. J. Comput. Neurosci. 33(2), 341–370 (2012)MathSciNetCrossRef
30.
Zurück zum Zitat Tewari, S.G., Majumdar, K.K.: A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity. J. Biol. Phys. 38(3), 465–496 (2012)CrossRef Tewari, S.G., Majumdar, K.K.: A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity. J. Biol. Phys. 38(3), 465–496 (2012)CrossRef
31.
Zurück zum Zitat Pinsky, P.F., Rinzel, J.: Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1(1), 39–60 (1994)CrossRef Pinsky, P.F., Rinzel, J.: Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1(1), 39–60 (1994)CrossRef
32.
Zurück zum Zitat Sarid, L., Bruno, R., Sakmann, B., Segev, I., Feldmeyer, D.: Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: interweaving in vitro and in vivo experimental observations. Proc. Natl. Acad. Sci. U.S.A. 104(41), 16353–16358 (2007)CrossRef Sarid, L., Bruno, R., Sakmann, B., Segev, I., Feldmeyer, D.: Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: interweaving in vitro and in vivo experimental observations. Proc. Natl. Acad. Sci. U.S.A. 104(41), 16353–16358 (2007)CrossRef
33.
Zurück zum Zitat Zachariou, M., Alexander, S.P.H., Coombes, S., Christodoulou, C.: A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition. PLoS ONE 8(3), e58296 (2013)CrossRef Zachariou, M., Alexander, S.P.H., Coombes, S., Christodoulou, C.: A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition. PLoS ONE 8(3), e58296 (2013)CrossRef
34.
Zurück zum Zitat Politi, A., Gaspers, L.D., Thomas, A.P., Höfer, T.: Models of IP3 and Ca2+ oscillations: frequency encoding and identification of underlying feedbacks. Biophys. J. 90(9), 3120–3133 (2006)CrossRef Politi, A., Gaspers, L.D., Thomas, A.P., Höfer, T.: Models of IP3 and Ca2+ oscillations: frequency encoding and identification of underlying feedbacks. Biophys. J. 90(9), 3120–3133 (2006)CrossRef
35.
Zurück zum Zitat Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: Kinetic models of synaptic transmission. In: Koch, C., Segev, I. (eds.) Methods in Neuronal Modeling, pp. 1–25. MIT Press, Cambridge (1998) Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: Kinetic models of synaptic transmission. In: Koch, C., Segev, I. (eds.) Methods in Neuronal Modeling, pp. 1–25. MIT Press, Cambridge (1998)
36.
Zurück zum Zitat Kim, B., Hawes, S.L., Gillani, F., Wallace, L.J., Blackwell, K.T.: Signaling pathways involved in striatal synaptic plasticity are sensitive to temporal pattern and exhibit spatial specificity. PLoS Comput. Biol. 9(3), e1002953 (2013)CrossRef Kim, B., Hawes, S.L., Gillani, F., Wallace, L.J., Blackwell, K.T.: Signaling pathways involved in striatal synaptic plasticity are sensitive to temporal pattern and exhibit spatial specificity. PLoS Comput. Biol. 9(3), e1002953 (2013)CrossRef
37.
Zurück zum Zitat De Young, G.W., Keizer, J.: A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc. Natl. Acad. Sci. U.S.A. 89(20), 9895–9899 (1992)CrossRef De Young, G.W., Keizer, J.: A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc. Natl. Acad. Sci. U.S.A. 89(20), 9895–9899 (1992)CrossRef
38.
Zurück zum Zitat Li, Y.X., Rinzel, J.: Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J. Theor. Biol. 166(4), 461–473 (1994)CrossRef Li, Y.X., Rinzel, J.: Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J. Theor. Biol. 166(4), 461–473 (1994)CrossRef
39.
Zurück zum Zitat Wade, J., McDaid, L., Harkin, J., Crunelli, V., Kelso, S.: Self-repair in a bidirectionally coupled astrocyte-neuron (AN) system based on retrograde signaling. Front. Comput. Neurosci. 6, 76 (2012)CrossRef Wade, J., McDaid, L., Harkin, J., Crunelli, V., Kelso, S.: Self-repair in a bidirectionally coupled astrocyte-neuron (AN) system based on retrograde signaling. Front. Comput. Neurosci. 6, 76 (2012)CrossRef
40.
Zurück zum Zitat Nadkarni, S., Jung, P.: Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 91(26), 268101 (2003)CrossRef Nadkarni, S., Jung, P.: Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 91(26), 268101 (2003)CrossRef
41.
Zurück zum Zitat Zenke, F., Agnes, E.J., Gerstner, W.: Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nature Commun. 6, 6922 (2015)CrossRef Zenke, F., Agnes, E.J., Gerstner, W.: Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nature Commun. 6, 6922 (2015)CrossRef
42.
Zurück zum Zitat Furber, S.: Large-scale neuromorphic computing systems. J. Neural Eng. 13(5), 051001 (2016)CrossRef Furber, S.: Large-scale neuromorphic computing systems. J. Neural Eng. 13(5), 051001 (2016)CrossRef
Metadaten
Titel
Modeling Neuron-Astrocyte Interactions: Towards Understanding Synaptic Plasticity and Learning in the Brain
verfasst von
Riikka Havela
Tiina Manninen
Ausra Saudargiene
Marja-Leena Linne
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-63312-1_14