Skip to main content

2014 | OriginalPaper | Buchkapitel

Modeling of Biofilm Systems: A Review

verfasst von : Harald Horn, Susanne Lackner

Erschienen in: Productive Biofilms

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The modeling of biochemical processes in biofilms is more complex compared to those in suspended biomass due to the existence of substrate gradients. The diffusion and reaction of substrates within the biofilms were simulated in 1D models in the 1970s. The quality of these simulation results was later improved by consideration of mass transfer at the bulk/biofilm interface and detachment of biomass from the surface. Furthermore, modeling of species distribution along the axis perpendicular to the substratum helped to simulate productivity and long-term behavior in multispecies biofilms. Multidimensional models that were able to give a realistic prediction of the surface structure of biofilms were published in the 1990s. The 2D or 3D representation of the distribution of the species in a matrix of extracellular polymeric substances (EPS) helped predict the behavior of multispecies biofilm systems. The influence of shear forces on such 2D or 3D biofilm structures was included by solving the Navier–Stokes equation for the liquid phase above the biofilm. More recently, the interaction between the fluid and biofilm structures was addressed more seriously by no longer considering the biofilm structures as being rigid. The latter approach opened a new door, enabling one to describe biofilms as viscoelastic systems that are not only able to grow and produce but also be deformed or even dislodged if external forces are applied.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Halan B, Buehler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30:453–465 Halan B, Buehler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30:453–465
2.
Zurück zum Zitat Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lapin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745 Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lapin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745
3.
Zurück zum Zitat Wilderer PA, Characklis WG (1989) Structure and function of biofilms. Wiley, New York Wilderer PA, Characklis WG (1989) Structure and function of biofilms. Wiley, New York
4.
Zurück zum Zitat Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199 Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199
5.
Zurück zum Zitat Dockery J, Keener J (2001) A mathematical model for quorum sensing in pseudomonas aeruginosa. Bull Math Biol 63:95–116 Dockery J, Keener J (2001) A mathematical model for quorum sensing in pseudomonas aeruginosa. Bull Math Biol 63:95–116
6.
Zurück zum Zitat Kuenen JG, Jørgensen BB, Revsbech NP (1986) Oxygen microprofiles of trickling filter biofilm. Water Res 20:1589–1598 Kuenen JG, Jørgensen BB, Revsbech NP (1986) Oxygen microprofiles of trickling filter biofilm. Water Res 20:1589–1598
7.
Zurück zum Zitat Revsbech NP, Christensen PB, Nielsen LP, Sorensen J (1989) Denitrification in a trickling filter biofilm studied by a microsensor for oxygen and nitrous oxide. Water Res 23:867–871 Revsbech NP, Christensen PB, Nielsen LP, Sorensen J (1989) Denitrification in a trickling filter biofilm studied by a microsensor for oxygen and nitrous oxide. Water Res 23:867–871
8.
Zurück zum Zitat Lewandowski Z, Walser G, Characklis W (1991) Reaction Kinetics in Biofilms. Biotechnol Bioeng 38:877–882 Lewandowski Z, Walser G, Characklis W (1991) Reaction Kinetics in Biofilms. Biotechnol Bioeng 38:877–882
9.
Zurück zum Zitat Cronenberg CCH, den Heuvel JCv (1991) Determination of glucose diffusion coefficient in biofilms with microelectrodes. Biosens Bioelectron 6:255–262 Cronenberg CCH, den Heuvel JCv (1991) Determination of glucose diffusion coefficient in biofilms with microelectrodes. Biosens Bioelectron 6:255–262
10.
Zurück zum Zitat Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567 Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567
11.
Zurück zum Zitat Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58:101–116 Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58:101–116
12.
Zurück zum Zitat Muyzer G, Ramsing NB (1995) Molecular methods to study the organization of microbial communities. Water Sci Technol 32:1–10 Muyzer G, Ramsing NB (1995) Molecular methods to study the organization of microbial communities. Water Sci Technol 32:1–10
13.
Zurück zum Zitat Vogelsang C, Schramm A, Picioreanu C, Loosdrecht MCM, Ostgaard K (2002) Microbial community analysis by FISH for mathematical modelling of selective enrichment of gel-entrapped nitrifiers obtained from domestic wastewater. Hydrobiologia 469:165–178 Vogelsang C, Schramm A, Picioreanu C, Loosdrecht MCM, Ostgaard K (2002) Microbial community analysis by FISH for mathematical modelling of selective enrichment of gel-entrapped nitrifiers obtained from domestic wastewater. Hydrobiologia 469:165–178
14.
Zurück zum Zitat Oehmen A, Lopez-Vazquez CM, Carvalho G, Reis MAM, van Loosdrecht MCM (2010) Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes. Water Res 44:4473–4486 Oehmen A, Lopez-Vazquez CM, Carvalho G, Reis MAM, van Loosdrecht MCM (2010) Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes. Water Res 44:4473–4486
15.
Zurück zum Zitat Gonenc E, Harremoes P (1985) Nitrification in rotating disc systems-1: criteria for transition from oxygen to ammonia rate limitation. Water Res 19:1119–1127 Gonenc E, Harremoes P (1985) Nitrification in rotating disc systems-1: criteria for transition from oxygen to ammonia rate limitation. Water Res 19:1119–1127
16.
Zurück zum Zitat Arvin E, Harremoes P (1990) Concepts and models for biofilm reactor performance. Water Sci Technol 22:171–192 Arvin E, Harremoes P (1990) Concepts and models for biofilm reactor performance. Water Sci Technol 22:171–192
17.
Zurück zum Zitat Muslu Y (1992) Developments in modelling biofilm reactors. J Biotechnol 23:183–191 Muslu Y (1992) Developments in modelling biofilm reactors. J Biotechnol 23:183–191
18.
Zurück zum Zitat Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1997) Modelling the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Water Sci Technol 36:147–156 Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1997) Modelling the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Water Sci Technol 36:147–156
19.
Zurück zum Zitat Boltz JP, Morgenroth E, Sen D (2010) Mathematical modelling of biofilms and biofilm reactors for engineering design. Water Sci Technol 62:1821–1836 Boltz JP, Morgenroth E, Sen D (2010) Mathematical modelling of biofilms and biofilm reactors for engineering design. Water Sci Technol 62:1821–1836
20.
Zurück zum Zitat Kissel JC, McCarty PL, Street R (1984) Numerical simulation of mixed-culture biofilm. J Environ Eng 110:393–411 Kissel JC, McCarty PL, Street R (1984) Numerical simulation of mixed-culture biofilm. J Environ Eng 110:393–411
21.
Zurück zum Zitat Wanner O, Gujer W (1984) Competition in biofilms. Water Sci Technol 17:27–44 Wanner O, Gujer W (1984) Competition in biofilms. Water Sci Technol 17:27–44
22.
Zurück zum Zitat Benefield L, Molz F (1985) Mathematical simulation of a biofilm process. Biotechnol Bioeng 27:921–931 Benefield L, Molz F (1985) Mathematical simulation of a biofilm process. Biotechnol Bioeng 27:921–931
23.
Zurück zum Zitat Wanner O, Reichert P (1996) Mathematical Modeling of Mixed-Culture Biofilms. Biotechnol Bioeng 49:172–184 Wanner O, Reichert P (1996) Mathematical Modeling of Mixed-Culture Biofilms. Biotechnol Bioeng 49:172–184
24.
Zurück zum Zitat Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol Bioeng 57:718–731 Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol Bioeng 57:718–731
25.
Zurück zum Zitat Alpkvist E, Picioreanu C, van Loosdrecht MCM, Heyden A (2006) Three-dimensional biofilm model with individual cells and continuum eps matrix. Biotechnol Bioeng 94:961–979 Alpkvist E, Picioreanu C, van Loosdrecht MCM, Heyden A (2006) Three-dimensional biofilm model with individual cells and continuum eps matrix. Biotechnol Bioeng 94:961–979
26.
Zurück zum Zitat Wang GTY, Bryers JD (1997) A dynamic model for receptor mediated specific adhesion of bacteria under uniform shear flow. Biofouling 11:227–252 Wang GTY, Bryers JD (1997) A dynamic model for receptor mediated specific adhesion of bacteria under uniform shear flow. Biofouling 11:227–252
27.
Zurück zum Zitat Alpkvist E, Klapper I (2007) Description of Mechanical Response Including Detachment Using a novel Particle Model of Biofilm/Flow Interaction. Water Sci Technol 55:265–273 Alpkvist E, Klapper I (2007) Description of Mechanical Response Including Detachment Using a novel Particle Model of Biofilm/Flow Interaction. Water Sci Technol 55:265–273
28.
Zurück zum Zitat Böl M, Möhle RB, Haesner M, Neu TR, Horn H, Krull R (2009) 3D finite element model of biofilm detachment using real biofilm structures from CLSM data. Biotechnol Bioeng 103:177–186 Böl M, Möhle RB, Haesner M, Neu TR, Horn H, Krull R (2009) 3D finite element model of biofilm detachment using real biofilm structures from CLSM data. Biotechnol Bioeng 103:177–186
29.
Zurück zum Zitat Chaudhry MAS, Beg SA (1998) A Review on the mathematical modeling of biofilm processes: advances in fundamentals of biofilm modeling. Chem Eng Technol 21:701–710 Chaudhry MAS, Beg SA (1998) A Review on the mathematical modeling of biofilm processes: advances in fundamentals of biofilm modeling. Chem Eng Technol 21:701–710
30.
Zurück zum Zitat Wanner O, Eberl HJ, Morgenroth E, Noguera DR, Picioreanu C, Rittmann BE, van Loosdrecht MCM (2008) Mathematical modeling of biofilms, IWA Publishing Wanner O, Eberl HJ, Morgenroth E, Noguera DR, Picioreanu C, Rittmann BE, van Loosdrecht MCM (2008) Mathematical modeling of biofilms, IWA Publishing
31.
Zurück zum Zitat Picioreanu C, Xavier JB, van Loosdrecht MCM (2004) Advances in mathematical modeling of biofilm structure. Biofilms 1:1–12 Picioreanu C, Xavier JB, van Loosdrecht MCM (2004) Advances in mathematical modeling of biofilm structure. Biofilms 1:1–12
32.
Zurück zum Zitat Klapper I, Dockery J (2010) Mathematical description of microbial biofilms. SIAM Rev 52:221–265 Klapper I, Dockery J (2010) Mathematical description of microbial biofilms. SIAM Rev 52:221–265
33.
Zurück zum Zitat Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Micro 2:95–108 Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Micro 2:95–108
34.
Zurück zum Zitat Wanner O, Gujer W (1986) A Multispecies biofilm model. Biotechnol Bioeng 28:314–328 Wanner O, Gujer W (1986) A Multispecies biofilm model. Biotechnol Bioeng 28:314–328
35.
Zurück zum Zitat Chen GH, Ozaki H, Terashima Y (1989) Modelling of the simultaneous removal of organic substances and Nitrogen in a biofilm. Water Sci Technol 21:791–804 Chen GH, Ozaki H, Terashima Y (1989) Modelling of the simultaneous removal of organic substances and Nitrogen in a biofilm. Water Sci Technol 21:791–804
36.
Zurück zum Zitat Liehr SK, Suidan MT, Eheart JW (1989) Effect of concentration boundary layer on carbon limited algal biofilms. J Environ Eng 115:320–335 Liehr SK, Suidan MT, Eheart JW (1989) Effect of concentration boundary layer on carbon limited algal biofilms. J Environ Eng 115:320–335
37.
Zurück zum Zitat Suidan MT, Flora RV, Biswas P, Sayles GD (1996) Optimization modelling of anaerobic biofilm reactors. Water Sci Technol 30:347–355 Suidan MT, Flora RV, Biswas P, Sayles GD (1996) Optimization modelling of anaerobic biofilm reactors. Water Sci Technol 30:347–355
38.
Zurück zum Zitat Elberling B, Damgaard LR (2001) Microscale Measurement of oxygen diffusion and consumption in subaqueous sulfide tailings. Geochim Cosmochim Acta 65:1897–1905 Elberling B, Damgaard LR (2001) Microscale Measurement of oxygen diffusion and consumption in subaqueous sulfide tailings. Geochim Cosmochim Acta 65:1897–1905
39.
Zurück zum Zitat Lorke A, Müller B, Maerki M, Wüest A (2003) Breathing sediments: the control of diffusive transport across the sediment–waterinterface by periodic boundary-layer turbulence. Limnol Oceanogr 48:2077–2085 Lorke A, Müller B, Maerki M, Wüest A (2003) Breathing sediments: the control of diffusive transport across the sediment–waterinterface by periodic boundary-layer turbulence. Limnol Oceanogr 48:2077–2085
40.
Zurück zum Zitat Bungay HR, Whalen WJ, Sanders WM (1969) Microprobe techniques for determining diffusivities and respiration rates in microbial slime systems. Biotechnologie and Bioengineering XI:765–772 Bungay HR, Whalen WJ, Sanders WM (1969) Microprobe techniques for determining diffusivities and respiration rates in microbial slime systems. Biotechnologie and Bioengineering XI:765–772
41.
Zurück zum Zitat Zhang TC, Bishop PL (1994) Experimental determination of the dissolved oxygen boundary layer and mass transfer resistance near the fluid-biofilm interface. Water Sci Technol 30:47–58 Zhang TC, Bishop PL (1994) Experimental determination of the dissolved oxygen boundary layer and mass transfer resistance near the fluid-biofilm interface. Water Sci Technol 30:47–58
42.
Zurück zum Zitat Kühl M, Cohen YDT, Jørgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172 Kühl M, Cohen YDT, Jørgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172
43.
Zurück zum Zitat Wäsche S, Horn H, Hempel DC (2000) Mass transfer phenomena in biofilm systems. Water Sci Technol 41:357–360 Wäsche S, Horn H, Hempel DC (2000) Mass transfer phenomena in biofilm systems. Water Sci Technol 41:357–360
44.
Zurück zum Zitat Beyenal H, Lewandowski Z (2000) Combined effect of substrate concentration and flow velocity on effective diffusity in biofilms. Water Res 34:528–538 Beyenal H, Lewandowski Z (2000) Combined effect of substrate concentration and flow velocity on effective diffusity in biofilms. Water Res 34:528–538
45.
Zurück zum Zitat Horn H (2003) Modellierung von Stoffumsatz und Stofftransport in Biofilmsystemen. FIT-Verlag, Paderbron Horn H (2003) Modellierung von Stoffumsatz und Stofftransport in Biofilmsystemen. FIT-Verlag, Paderbron
46.
Zurück zum Zitat Gantzer CJ, Rittman BE, Herricks EE (1988) Mass transfer to streambed biofilms. Water Res 22:709–722 Gantzer CJ, Rittman BE, Herricks EE (1988) Mass transfer to streambed biofilms. Water Res 22:709–722
47.
Zurück zum Zitat Brauer H (1971) Stoffaustausch einschließlich chemischer Reaktoren, Verlag Sauerländer Aarau Brauer H (1971) Stoffaustausch einschließlich chemischer Reaktoren, Verlag Sauerländer Aarau
48.
Zurück zum Zitat Hooijmans CM (1990) Diffusion coupled with bioconversion in immobilized systems: use of an oxygen microsensor, Promotionsschrift an der Uni Delft Hooijmans CM (1990) Diffusion coupled with bioconversion in immobilized systems: use of an oxygen microsensor, Promotionsschrift an der Uni Delft
49.
Zurück zum Zitat Debus O (1993) Aerober Abbau von flüchtigen Abwasserinhaltsstoffen in Reaktoren mit membrangebundenem Biofilm. GFEU an der TUHH, Hamburg Debus O (1993) Aerober Abbau von flüchtigen Abwasserinhaltsstoffen in Reaktoren mit membrangebundenem Biofilm. GFEU an der TUHH, Hamburg
50.
Zurück zum Zitat Li S, Chen GH (1994) Modelling the organic removal and oxygen consumption by biofilms in an open-channel flow. Water Sci Technol 30:53–61 Li S, Chen GH (1994) Modelling the organic removal and oxygen consumption by biofilms in an open-channel flow. Water Sci Technol 30:53–61
51.
Zurück zum Zitat Christiansen P, Hollesen L, Harremoes P (1995) Liquid film diffusion on reaction rate in submerged biofilters. Water Res 29:947–952 Christiansen P, Hollesen L, Harremoes P (1995) Liquid film diffusion on reaction rate in submerged biofilters. Water Res 29:947–952
52.
Zurück zum Zitat Horn H, Hempel DC (1995) Mass transfer coefficients for an autotrophic and a heterotrophic biofilm system. Water Sci Technol 32:199–204 Horn H, Hempel DC (1995) Mass transfer coefficients for an autotrophic and a heterotrophic biofilm system. Water Sci Technol 32:199–204
53.
Zurück zum Zitat Wäsche S, Horn H, Hempel DC (2002) Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. lf. Water Res 36:4775–4784 Wäsche S, Horn H, Hempel DC (2002) Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. lf. Water Res 36:4775–4784
54.
Zurück zum Zitat Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2000) A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. Biotechnol Bioeng 68:355–369 Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2000) A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. Biotechnol Bioeng 68:355–369
55.
Zurück zum Zitat Williamson K, McCarty PL (1976) A Model of substrate utilization by Bacterial Films. J Water Pollut Control 48:9–24 Williamson K, McCarty PL (1976) A Model of substrate utilization by Bacterial Films. J Water Pollut Control 48:9–24
56.
Zurück zum Zitat LaMotta EJ (1976) Internal diffusion and reaction in biological films. Environ Sci Technol 10:765–769 LaMotta EJ (1976) Internal diffusion and reaction in biological films. Environ Sci Technol 10:765–769
57.
Zurück zum Zitat Harremoes P (1976) The significance of pore diffusion to filter denitrification. J Water Pollut Control Fed 48:377–388 Harremoes P (1976) The significance of pore diffusion to filter denitrification. J Water Pollut Control Fed 48:377–388
58.
Zurück zum Zitat Harris NP, Hansford GS (1976) A study of substrate removal in a microbial film reactor. Water Res 10:935–943 Harris NP, Hansford GS (1976) A study of substrate removal in a microbial film reactor. Water Res 10:935–943
59.
Zurück zum Zitat Timmermans P, Van Haute A (1984) Influence of the type of organisms on the biomass hold-up in a fluidized-bed reactor. Appl Microbiol Biotechnol 19:36–43 Timmermans P, Van Haute A (1984) Influence of the type of organisms on the biomass hold-up in a fluidized-bed reactor. Appl Microbiol Biotechnol 19:36–43
60.
Zurück zum Zitat van Loosdrecht MCM, Eikelboom D, Gjaltema A, Mulder A, Tijhuis L, Heijnen JJ (1995) Biofilm structures. Water Sci Technol 32:35–44 van Loosdrecht MCM, Eikelboom D, Gjaltema A, Mulder A, Tijhuis L, Heijnen JJ (1995) Biofilm structures. Water Sci Technol 32:35–44
61.
Zurück zum Zitat Stoodley P, Dodds I, Boyle JD, Lappin-Scott HM (1999) Influence of hydrodynamics and nurients on biofilm structur. J Appl Microbiol Symp Suppl 85:19S–28S Stoodley P, Dodds I, Boyle JD, Lappin-Scott HM (1999) Influence of hydrodynamics and nurients on biofilm structur. J Appl Microbiol Symp Suppl 85:19S–28S
62.
Zurück zum Zitat Gujer W, Wanner O (1989) Modeling mixed population biofilms, In: Characklis WG, Marshall KC (eds) Biofilms, John Wiley & Sons, New York pp 397–445 Gujer W, Wanner O (1989) Modeling mixed population biofilms, In: Characklis WG, Marshall KC (eds) Biofilms, John Wiley & Sons, New York pp 397–445
63.
Zurück zum Zitat Sanderson SS, Stewart PS (1997) Evidence of bacterial adaption to Monochloramine in Pseudomonas aeruginose biofilms and evaluation of biocide action model. Biotechnol Bioeng 56:201–209 Sanderson SS, Stewart PS (1997) Evidence of bacterial adaption to Monochloramine in Pseudomonas aeruginose biofilms and evaluation of biocide action model. Biotechnol Bioeng 56:201–209
64.
Zurück zum Zitat Rittmann BE, Stilwell D, Ohashi A (2002) The transient-state, multiple-species biofilm model for biofiltration processes. Water Res 36:2342–2356 Rittmann BE, Stilwell D, Ohashi A (2002) The transient-state, multiple-species biofilm model for biofiltration processes. Water Res 36:2342–2356
65.
Zurück zum Zitat Hao X, Heijnena JJ, Van Loosdrecht MCM (2002) Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnol Bioeng 77:266–277 Hao X, Heijnena JJ, Van Loosdrecht MCM (2002) Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnol Bioeng 77:266–277
66.
Zurück zum Zitat Wichern M, Lindenblatt C, Lübken M, Horn H (2008) Experimental results and mathematical modelling of an autotrophic and heterotrophic biofilm in a sand filter treating landfill leachate and municipal wastewater. Water Res 42:3899–3909 Wichern M, Lindenblatt C, Lübken M, Horn H (2008) Experimental results and mathematical modelling of an autotrophic and heterotrophic biofilm in a sand filter treating landfill leachate and municipal wastewater. Water Res 42:3899–3909
67.
Zurück zum Zitat Fruhen M, Christan E, Gujer W, Wanner O (1991) Significance of Spatial Distribution of Microbial Species in Mixed Culture Biofilms. Water Sci Technol 23:1365–1374 Fruhen M, Christan E, Gujer W, Wanner O (1991) Significance of Spatial Distribution of Microbial Species in Mixed Culture Biofilms. Water Sci Technol 23:1365–1374
68.
Zurück zum Zitat Horn H, Hempel DC (1997) Growth and decay in an auto-/heterotrophic biofilm. Water Res 31:2243–2252 Horn H, Hempel DC (1997) Growth and decay in an auto-/heterotrophic biofilm. Water Res 31:2243–2252
69.
Zurück zum Zitat Matsumoto S, Terada A, Tsuneda S (2007) Modeling of membrane-aerated biofilm: Effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification. Biochem Eng J 37:98–107 Matsumoto S, Terada A, Tsuneda S (2007) Modeling of membrane-aerated biofilm: Effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification. Biochem Eng J 37:98–107
70.
Zurück zum Zitat Lackner S, Smets BF (2012) Effect of the kinetics of ammonium and nitrite oxidation on nitritation success or failure for different biofilm reactor geometries. Biochem Eng J 69:2123–2129 Lackner S, Smets BF (2012) Effect of the kinetics of ammonium and nitrite oxidation on nitritation success or failure for different biofilm reactor geometries. Biochem Eng J 69:2123–2129
71.
Zurück zum Zitat Lackner S, Terada A, Horn H, Henze M, Smets BF (2010) Nitritation performance in membrane-aerated biofilm reactors differs from conventional biofilm systems. Water Res 44:6073–6084 Lackner S, Terada A, Horn H, Henze M, Smets BF (2010) Nitritation performance in membrane-aerated biofilm reactors differs from conventional biofilm systems. Water Res 44:6073–6084
72.
Zurück zum Zitat Henze M, Gujer W, Mino T, van Loosdrecht M (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3, IWA Publishing, London Henze M, Gujer W, Mino T, van Loosdrecht M (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3, IWA Publishing, London
73.
Zurück zum Zitat Siegrist H, Gujer W (1985) Mass transfer mechanisms in a heterotrophic biofilm. Water Res 19:1369–1378 Siegrist H, Gujer W (1985) Mass transfer mechanisms in a heterotrophic biofilm. Water Res 19:1369–1378
74.
Zurück zum Zitat Fan LS, Leyva-Ramos R, Wisecarver KD, Zehner BJ (1990) Diffusion of phenol through a biofilm grown on activated carbon particles in a draft-tube three-phase fluidized-bed bioreactor. Biotechnol Bioeng 35:279–286 Fan LS, Leyva-Ramos R, Wisecarver KD, Zehner BJ (1990) Diffusion of phenol through a biofilm grown on activated carbon particles in a draft-tube three-phase fluidized-bed bioreactor. Biotechnol Bioeng 35:279–286
75.
Zurück zum Zitat Horn H, Morgenroth E (2006) Transport of oxygen, sodium chloride, and sodium nitrate in biofilms. Chem Sci Eng 61:1347–1356 Horn H, Morgenroth E (2006) Transport of oxygen, sodium chloride, and sodium nitrate in biofilms. Chem Sci Eng 61:1347–1356
76.
Zurück zum Zitat Reichert P (1994) AQUASIM—Computer program for simulation and data analysis of aquatic systems. Schriftenreihe der EAWAG, Dübendorf Reichert P (1994) AQUASIM—Computer program for simulation and data analysis of aquatic systems. Schriftenreihe der EAWAG, Dübendorf
77.
Zurück zum Zitat Bernet N, Sanchez O, Cesbron D, Steyer JP, Delgenès JP (2005) Modeling and control of nitrite accumulation in a nitrifying biofilm reactor. Biochem Eng J 24:173–183 Bernet N, Sanchez O, Cesbron D, Steyer JP, Delgenès JP (2005) Modeling and control of nitrite accumulation in a nitrifying biofilm reactor. Biochem Eng J 24:173–183
78.
Zurück zum Zitat Julio Pérez J, Costa E, Kreft JU (2009) Conditions for partial nitrification in biofilm reactors and a kinetic explanation. Biotechnol Bioeng 103:282–295 Julio Pérez J, Costa E, Kreft JU (2009) Conditions for partial nitrification in biofilm reactors and a kinetic explanation. Biotechnol Bioeng 103:282–295
79.
Zurück zum Zitat Rauch W, Vanhooren H, Vanrolleghem P (1999) A simplified mixed-culture biofilm model. Wat Res 33:2148–2162 Rauch W, Vanhooren H, Vanrolleghem P (1999) A simplified mixed-culture biofilm model. Wat Res 33:2148–2162
80.
Zurück zum Zitat Ni BJ, Chen YP, Liu SY, Fang F, Xie WM, Yu HQ (2009) Modeling a Granule-Based Anaerobic Ammonium Oxidizing (ANAMMOX) Process. Biotechnol Bioeng 103:490–499 Ni BJ, Chen YP, Liu SY, Fang F, Xie WM, Yu HQ (2009) Modeling a Granule-Based Anaerobic Ammonium Oxidizing (ANAMMOX) Process. Biotechnol Bioeng 103:490–499
81.
Zurück zum Zitat Brockmann D, Rosenwinkel K-H, Morgenroth E (2006) Modelling deammonification in biofilm systems: Sensitivity and identifiability analysis as a basis for the design of experiments for parameter estimation. In: Marquardt W, Pantelides C, (eds) Computer Aided Chemical Engineering, Elsevier pp 221–226 Brockmann D, Rosenwinkel K-H, Morgenroth E (2006) Modelling deammonification in biofilm systems: Sensitivity and identifiability analysis as a basis for the design of experiments for parameter estimation. In: Marquardt W, Pantelides C, (eds) Computer Aided Chemical Engineering, Elsevier pp 221–226
82.
Zurück zum Zitat Horn H, Neu TR, Wulkow M (2001) Modelling the structure and function of extracellularpolymeric substances in biofilms with new numerical techniques. Water Sci Technol 43:121–127 Horn H, Neu TR, Wulkow M (2001) Modelling the structure and function of extracellularpolymeric substances in biofilms with new numerical techniques. Water Sci Technol 43:121–127
83.
Zurück zum Zitat Laspidou C, Rittmann BE (2002) A Unified Theory for Extracellular polymeric Substances, Soluble Microbial Products, and Active and Inert Biomass. Wat. Res. 36:2711–2720 Laspidou C, Rittmann BE (2002) A Unified Theory for Extracellular polymeric Substances, Soluble Microbial Products, and Active and Inert Biomass. Wat. Res. 36:2711–2720
84.
Zurück zum Zitat Wolf G, Picioreanu C, van Loosdrecht MCM (2007) Kinetic model of phototrophic biofilms—the PHOBIA model. Biotechnol Bioeng 97:1064–1079 Wolf G, Picioreanu C, van Loosdrecht MCM (2007) Kinetic model of phototrophic biofilms—the PHOBIA model. Biotechnol Bioeng 97:1064–1079
85.
Zurück zum Zitat Flora JRV, Suidan MT, Biswas P, Sayles GD (1995) Modeling algal biofilms: role of carbon, light, cell surface charge, and ionic species. Water Environ Res 67:87–94 Flora JRV, Suidan MT, Biswas P, Sayles GD (1995) Modeling algal biofilms: role of carbon, light, cell surface charge, and ionic species. Water Environ Res 67:87–94
86.
Zurück zum Zitat Rauch W, Vanrolleghem PA (1998) Modelling benthic activity in shallow eutrophic rivers. Water Sci Technol 37:129–137 Rauch W, Vanrolleghem PA (1998) Modelling benthic activity in shallow eutrophic rivers. Water Sci Technol 37:129–137
87.
Zurück zum Zitat Rinas U, El-Enshasy H, Emmler M, Hille A, Hempel DC, Horn H (2005) Model-based prediction of substrate conversion and protein synthesis and excretion in recombinant Aspergillus niger biopellets. Chem Sci Eng 60:2729–2739 Rinas U, El-Enshasy H, Emmler M, Hille A, Hempel DC, Horn H (2005) Model-based prediction of substrate conversion and protein synthesis and excretion in recombinant Aspergillus niger biopellets. Chem Sci Eng 60:2729–2739
88.
Zurück zum Zitat Sakurai A, Imai H, Sakakibara M (1999) Citric acid production using biofilm of aspergillus niger.lf. Recent Res Dev Biotechnol Bioeng 2:1–13 Sakurai A, Imai H, Sakakibara M (1999) Citric acid production using biofilm of aspergillus niger.lf. Recent Res Dev Biotechnol Bioeng 2:1–13
89.
Zurück zum Zitat Tekerlekopoulou AG, Tsiflikiotou M, Akritidou L, Viennas A, Tsiamis G, Pavlou S, Bourtzis K, Vayenas DV (2013) Modelling of biological Cr(VI) removal in draw-fill reactors using microorganisms in suspended and attached growth systems. Water Res 47:623–636 Tekerlekopoulou AG, Tsiflikiotou M, Akritidou L, Viennas A, Tsiamis G, Pavlou S, Bourtzis K, Vayenas DV (2013) Modelling of biological Cr(VI) removal in draw-fill reactors using microorganisms in suspended and attached growth systems. Water Res 47:623–636
90.
Zurück zum Zitat Morgenroth E, Wilderer PA (2000) Influence of detachment mechanisms on competition in biofilms. Water Res 34:417–426 Morgenroth E, Wilderer PA (2000) Influence of detachment mechanisms on competition in biofilms. Water Res 34:417–426
91.
Zurück zum Zitat Horn H, Reiff H, Morgenroth E (2003) Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnol Bioeng 81:607–617 Horn H, Reiff H, Morgenroth E (2003) Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnol Bioeng 81:607–617
92.
Zurück zum Zitat Stewart PS, McFeters GA, Huang CT (2000) Biofilm formation and persistence. In: Bryers JD, (ed) Biofilms II: process analysis and application, Wiley-Liss, Inc Stewart PS, McFeters GA, Huang CT (2000) Biofilm formation and persistence. In: Bryers JD, (ed) Biofilms II: process analysis and application, Wiley-Liss, Inc
93.
Zurück zum Zitat Kreft JU, Wimpenny JWT (2001) Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Sci Technol 43:135–141 Kreft JU, Wimpenny JWT (2001) Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Sci Technol 43:135–141
94.
Zurück zum Zitat Eberl HJ, Picioreanu C, Heijnen JJ, van Loosdrecht MCM (2000) A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in bioflms. Chem Eng Sci 55:6209–6222 Eberl HJ, Picioreanu C, Heijnen JJ, van Loosdrecht MCM (2000) A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in bioflms. Chem Eng Sci 55:6209–6222
95.
Zurück zum Zitat Bryers JD (1984) Biofilm formation and chemostat dynamics: Pure and mixed culture considerations. Biotechnol Bioeng 26:948–958 Bryers JD (1984) Biofilm formation and chemostat dynamics: Pure and mixed culture considerations. Biotechnol Bioeng 26:948–958
96.
Zurück zum Zitat Chang HT, Rittmann BE (1987) Mathematical modeling of biofilm on activated carbon. Environ Sci Technol 21:273–280 Chang HT, Rittmann BE (1987) Mathematical modeling of biofilm on activated carbon. Environ Sci Technol 21:273–280
97.
Zurück zum Zitat Kreikenbohm R, Stephan W (1985) Application of a two-compartment model to the wall growth of Pelobacter acidigallici under continuous culture conditions. Biotechnol Bioeng 27:296–301 Kreikenbohm R, Stephan W (1985) Application of a two-compartment model to the wall growth of Pelobacter acidigallici under continuous culture conditions. Biotechnol Bioeng 27:296–301
98.
Zurück zum Zitat Trulear MG, Characklis WG (1982) Dynamics of biofilm processes. J WPCF 54:1288–1301 Trulear MG, Characklis WG (1982) Dynamics of biofilm processes. J WPCF 54:1288–1301
99.
Zurück zum Zitat Bakke R, Trulear MG, Robinson JA, Characklis WG (1984) Activity of pseudomonas aeruginosa in biofilms: steady stat. Biotechnol Bioeng 26:1418–1424 Bakke R, Trulear MG, Robinson JA, Characklis WG (1984) Activity of pseudomonas aeruginosa in biofilms: steady stat. Biotechnol Bioeng 26:1418–1424
100.
Zurück zum Zitat Rittman BE (1982) The effect of shear stress on biofilm loss rate. Biotechnol Bioeng 24:501–506 Rittman BE (1982) The effect of shear stress on biofilm loss rate. Biotechnol Bioeng 24:501–506
101.
Zurück zum Zitat Peyton BM, Characklis WG (1993) A Statistical-analysis of the effect of substrate utilization and shear-stress on the kinetics of biofilm detachment. Biotechnol Bioeng 41:728–735 Peyton BM, Characklis WG (1993) A Statistical-analysis of the effect of substrate utilization and shear-stress on the kinetics of biofilm detachment. Biotechnol Bioeng 41:728–735
102.
Zurück zum Zitat Morgenroth E, Wilderer PA (1999) Controlled biomass removal—the key parameter to achieve enhanced biological phosphorus removal in biofilm systems. Water Sci Technol 39:33–40 Morgenroth E, Wilderer PA (1999) Controlled biomass removal—the key parameter to achieve enhanced biological phosphorus removal in biofilm systems. Water Sci Technol 39:33–40
103.
Zurück zum Zitat Speitel GE, DiGiano FA (1987) Biofilm shearing under dynamic conditions. J Environ Eng—ASCE 113:464–475 Speitel GE, DiGiano FA (1987) Biofilm shearing under dynamic conditions. J Environ Eng—ASCE 113:464–475
104.
Zurück zum Zitat Rittmann BE (1989) Detachment from Biofilms, In: Characklis WG, Marshall KC (eds) Biofilms, John Wiley & Sons, New York pp 49–58 Rittmann BE (1989) Detachment from Biofilms, In: Characklis WG, Marshall KC (eds) Biofilms, John Wiley & Sons, New York pp 49–58
105.
Zurück zum Zitat Peyton BM, Characklis WG (1992) Kinetics of biofilm detachment. Water Sci Technol 26:1995–1998 Peyton BM, Characklis WG (1992) Kinetics of biofilm detachment. Water Sci Technol 26:1995–1998
106.
Zurück zum Zitat Robinson JA, Trulear MG, Characklis WG (1984) Cellular reproduction and extracellular polymer formation by pseudomonas aeruginosa in continuous culture. Biotechnol Bioeng 26:1409–1417 Robinson JA, Trulear MG, Characklis WG (1984) Cellular reproduction and extracellular polymer formation by pseudomonas aeruginosa in continuous culture. Biotechnol Bioeng 26:1409–1417
107.
Zurück zum Zitat Stewart PS (1993) A model of biofilm detachment. Biotechnol Bioeng 41:111–117 Stewart PS (1993) A model of biofilm detachment. Biotechnol Bioeng 41:111–117
108.
Zurück zum Zitat Morgenroth E, Wilderer PA (1998) Modeling the enhanced biological phosphorus removal in a sequenzing batch biofilm reactor. Water Sci Technol 37:583–587 Morgenroth E, Wilderer PA (1998) Modeling the enhanced biological phosphorus removal in a sequenzing batch biofilm reactor. Water Sci Technol 37:583–587
109.
Zurück zum Zitat Nicolella C, Di Felice R, Rovatti M (1996) An experimental model of biofilm detachment in liquid fluidized bed biological reactors. Biotechnol Bioeng 51:713–719 Nicolella C, Di Felice R, Rovatti M (1996) An experimental model of biofilm detachment in liquid fluidized bed biological reactors. Biotechnol Bioeng 51:713–719
110.
Zurück zum Zitat Abbas F, Sudarsan R, Eberl HJ (2012) Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Math Biosci Eng 9:215–239 Abbas F, Sudarsan R, Eberl HJ (2012) Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Math Biosci Eng 9:215–239
111.
Zurück zum Zitat Wimpenny JWT, Colasanti R (1997) A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22:1–16 Wimpenny JWT, Colasanti R (1997) A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22:1–16
112.
Zurück zum Zitat Hermanowicz SW (1999) Two-dimensional simulations of biofilm development: effects of external environmental conditions. Water Sci Technol 39:107–114 Hermanowicz SW (1999) Two-dimensional simulations of biofilm development: effects of external environmental conditions. Water Sci Technol 39:107–114
113.
Zurück zum Zitat Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1999) Discret-differential modelling of biofilm structure. Water Sci Technol 39:115–123 Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1999) Discret-differential modelling of biofilm structure. Water Sci Technol 39:115–123
114.
Zurück zum Zitat Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol Bioeng 69:504–515 Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol Bioeng 69:504–515
115.
Zurück zum Zitat Dockery J, Klapper I (2001) Finger formation in biofilm layers. Siam J Appl Math 62:853–869 Dockery J, Klapper I (2001) Finger formation in biofilm layers. Siam J Appl Math 62:853–869
116.
Zurück zum Zitat Eberl H, Parker D, van Loosdrecht M (2001) A new deterministic spatio- temporal continuum model for biofilm development. Journal of Theoretical Medicine 3:161–175 Eberl H, Parker D, van Loosdrecht M (2001) A new deterministic spatio- temporal continuum model for biofilm development. Journal of Theoretical Medicine 3:161–175
117.
Zurück zum Zitat Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72:205–218 Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72:205–218
118.
Zurück zum Zitat Chambless JD, Stewart PS (2007) A three-dimensional computer model analysis of three hypothetical biofilm detachment mechanisms. Biotechnol Bioeng 97:1573–1584 Chambless JD, Stewart PS (2007) A three-dimensional computer model analysis of three hypothetical biofilm detachment mechanisms. Biotechnol Bioeng 97:1573–1584
119.
Zurück zum Zitat Kreft J-U, Picioreanu C, Wimpenny JWT, van Loosdrecht MCM (2001) Individual-based modelling of biofilms. Microbiology 147:2897–2912 Kreft J-U, Picioreanu C, Wimpenny JWT, van Loosdrecht MCM (2001) Individual-based modelling of biofilms. Microbiology 147:2897–2912
120.
Zurück zum Zitat Kreft JU (2004) Biofilms promote altruism. Microbiology 150:2751–2760 Kreft JU (2004) Biofilms promote altruism. Microbiology 150:2751–2760
121.
Zurück zum Zitat Picioreanu C, Kreft JU, van Loosdrecht MCM (2004) Particle-Based multidimensional multispecies biofilm model.lf. Appl Environ Microbiol 70:3024–3040 Picioreanu C, Kreft JU, van Loosdrecht MCM (2004) Particle-Based multidimensional multispecies biofilm model.lf. Appl Environ Microbiol 70:3024–3040
122.
Zurück zum Zitat Xavier JB, Picioreanu C, Van Loosdrecht MCM (2005) A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ Microbiol 7:1085–1103 Xavier JB, Picioreanu C, Van Loosdrecht MCM (2005) A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ Microbiol 7:1085–1103
123.
Zurück zum Zitat Xavier JB, Picioreanu C, van Loosdrecht MCM (2005) A general description of detachment for multidimensional modelling of biofilms. Biotechnol Bioeng 6:651–669 Xavier JB, Picioreanu C, van Loosdrecht MCM (2005) A general description of detachment for multidimensional modelling of biofilms. Biotechnol Bioeng 6:651–669
124.
Zurück zum Zitat Picioreanu C, Head IM, Katuri KP, van Loosdrecht MCM, Scott K (2007) A computational model for biofilm-based microbial fuel cells. Water Res 41:2921–2940 Picioreanu C, Head IM, Katuri KP, van Loosdrecht MCM, Scott K (2007) A computational model for biofilm-based microbial fuel cells. Water Res 41:2921–2940
125.
Zurück zum Zitat von der Schulenburg DAG, Pintelon TRR, Picioreanu C, Van Loosdrecht MCM, Johns ML (2009) Three-dimensional simulations of biofilm growth in porous media. AICHE J 55:494–504 von der Schulenburg DAG, Pintelon TRR, Picioreanu C, Van Loosdrecht MCM, Johns ML (2009) Three-dimensional simulations of biofilm growth in porous media. AICHE J 55:494–504
126.
Zurück zum Zitat Radu AI, Picioreanu C, Vrouwenvelder JS, van Loosdrecht MCM (2010) Modeling the effect of biofilm formation on reverse osmosis performance: flux, feed channel pressure drop and solute passage. J Membr Sci 365:1–15 Radu AI, Picioreanu C, Vrouwenvelder JS, van Loosdrecht MCM (2010) Modeling the effect of biofilm formation on reverse osmosis performance: flux, feed channel pressure drop and solute passage. J Membr Sci 365:1–15
127.
Zurück zum Zitat Lardon LA, Merkey BV, Martins S, Dötsch A, Picioreanu C, Kreft J-U, Smets BF (2011) iDynoMiCS: next-generation individual-based modelling of biofilms. Environ Microbiol 13:2416–2434 Lardon LA, Merkey BV, Martins S, Dötsch A, Picioreanu C, Kreft J-U, Smets BF (2011) iDynoMiCS: next-generation individual-based modelling of biofilms. Environ Microbiol 13:2416–2434
128.
Zurück zum Zitat Möhle R (2008) An Analytic-synthetic approach combining mathematical modeling and experiments—towards an understanding of biofilm systems. Institute of Biochemical Engineering Technische Universität Braunschweig, Braunschweig Möhle R (2008) An Analytic-synthetic approach combining mathematical modeling and experiments—towards an understanding of biofilm systems. Institute of Biochemical Engineering Technische Universität Braunschweig, Braunschweig
129.
Zurück zum Zitat Böl M, Ehret AE, Albero AB, Hellriegel J, Rainer Krull R (2013) Recent advances in mechanical characterisation of biofilm and their significance for material modelling. Crit Rev Biotechnol 33:145–171 Böl M, Ehret AE, Albero AB, Hellriegel J, Rainer Krull R (2013) Recent advances in mechanical characterisation of biofilm and their significance for material modelling. Crit Rev Biotechnol 33:145–171
130.
Zurück zum Zitat Guelon T, Mathias JD, Stoodley P (2011) Advances in Biofilm Mechanics. Springer, Berlin Guelon T, Mathias JD, Stoodley P (2011) Advances in Biofilm Mechanics. Springer, Berlin
131.
Zurück zum Zitat Klapper I, Dockery J (2006) Role of cohesion in the material description of biofilms. Phys Rev E 74:031902 Klapper I, Dockery J (2006) Role of cohesion in the material description of biofilms. Phys Rev E 74:031902
132.
Zurück zum Zitat Cogan NG (2008) Two-fluid model of biofilm disinfection. Bull Math Biol 70:800–819 Cogan NG (2008) Two-fluid model of biofilm disinfection. Bull Math Biol 70:800–819
133.
Zurück zum Zitat Taherzadeh D (2011) Mechanics and Substrate Transport of Moving Biofilm Structures. Technische Universität München, Munich, Institute of Water Quality Control Taherzadeh D (2011) Mechanics and Substrate Transport of Moving Biofilm Structures. Technische Universität München, Munich, Institute of Water Quality Control
134.
Zurück zum Zitat Duddu R, Chopp DL, Moran B (2009) A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol Bioeng 103:92–104 Duddu R, Chopp DL, Moran B (2009) A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol Bioeng 103:92–104
135.
Zurück zum Zitat Limbert G, Bryan R, Cotton R, Young P, Hall-Stoodley L, Kathju S, Stoodley P (2013) On the mechanics of bacterial biofilms on non-dissolvable surgical sutures: a laser scanning confocal microscopy-based finite element study. Acta Biomater 9:6641–6652 Limbert G, Bryan R, Cotton R, Young P, Hall-Stoodley L, Kathju S, Stoodley P (2013) On the mechanics of bacterial biofilms on non-dissolvable surgical sutures: a laser scanning confocal microscopy-based finite element study. Acta Biomater 9:6641–6652
136.
Zurück zum Zitat Taherzadeh D, Picioreanu C, Küttler U, Simone A, Wall WA, Horn H (2010) Computational study of the drag and oscillatory movement of biofilm streamers in fast flows. Biotechnol Bioeng 105:600–610 Taherzadeh D, Picioreanu C, Küttler U, Simone A, Wall WA, Horn H (2010) Computational study of the drag and oscillatory movement of biofilm streamers in fast flows. Biotechnol Bioeng 105:600–610
137.
Zurück zum Zitat Taherzadeh D, Picioreanu C, Horn H (2012) Mass transfer enhancement in moving biofilm structures. Biophys J 102:1483–1492 Taherzadeh D, Picioreanu C, Horn H (2012) Mass transfer enhancement in moving biofilm structures. Biophys J 102:1483–1492
138.
Zurück zum Zitat Morgenroth E, van Loosdrecht MCM, Wanner O (2000) Biofilm models for the practitioner. Water Sci Technol 41:509–512 Morgenroth E, van Loosdrecht MCM, Wanner O (2000) Biofilm models for the practitioner. Water Sci Technol 41:509–512
139.
Zurück zum Zitat Brockmann D, Horn H, Alex J, Beier M, Morgenroth E, Ochmann C, Sörensen K, Wanner O, Wichern M (2008) Simulation of Nitrification in a Full-scale Biofilter—Comparison of Different Approaches. IWA Biofilm Technologies, pp 229–231, IWA, Singapore Brockmann D, Horn H, Alex J, Beier M, Morgenroth E, Ochmann C, Sörensen K, Wanner O, Wichern M (2008) Simulation of Nitrification in a Full-scale Biofilter—Comparison of Different Approaches. IWA Biofilm Technologies, pp 229–231, IWA, Singapore
140.
Zurück zum Zitat Boltz JP, Morgenroth E, Brockmann D, Bott C, Gellner WJ, Vanrolleghem PA (2011) Systematic evaluation of biofilm models for engineering practice: components and critical assumptions. Water Sci Technol 64:930–944 Boltz JP, Morgenroth E, Brockmann D, Bott C, Gellner WJ, Vanrolleghem PA (2011) Systematic evaluation of biofilm models for engineering practice: components and critical assumptions. Water Sci Technol 64:930–944
141.
Zurück zum Zitat Picioreanu C, Vrouwenvelder JS, Kruithof JC, van Loosdrecht MCM (2010) Biofouling in spiral wound membrane systems: Three-dimensional CFD model based evaluation of experimental data. J Membr Sci 346:71–85 Picioreanu C, Vrouwenvelder JS, Kruithof JC, van Loosdrecht MCM (2010) Biofouling in spiral wound membrane systems: Three-dimensional CFD model based evaluation of experimental data. J Membr Sci 346:71–85
Metadaten
Titel
Modeling of Biofilm Systems: A Review
verfasst von
Harald Horn
Susanne Lackner
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/10_2014_275

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.