Skip to main content
Erschienen in:

27.06.2023 | Original Article

Modeling of continuum robots with environmental constraints

verfasst von: Peng Chen, Yuwang Liu, Tingwen Yuan, Wenping Shi

Erschienen in: Engineering with Computers | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Leveraging the intrinsic compliance of continuum robots is a promising approach to enable symbiosis and harmoniousness in an unstructured environment. This compliance in interaction reduces the risk of damage for both the robot and its surroundings. However, the high degrees of freedom of continuum robots complicates the establishment of an analytical model that accurately describes the robot mechanical behavior, particularly in the case of large deformations during contact with obstacles. In this study, a novel modeling method is explored and the configuration space parameters of a robot are defined by considering the environmental constraints and variable curvature. A 10-section continuum robot prototype with a length of 1 m, was developed to validate the model. The robot’s ability to reach the target points, to follow complex paths and incidents of contacting with obstacles validate the feasibility and accuracy of the model. The ratio of the robot endpoint average position errors to its length are 2.045% and 2.446%, respectively, in conditions without and with obstacle. Thus, this work may serve as a reference for designing and analyzing continuum robots, providing a new perspective on the integration of robots with the environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521(7553):467–475CrossRef Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521(7553):467–475CrossRef
2.
Zurück zum Zitat Hwang G, Park J, Cortes D, Hyeon K, Kyung K (2022) Electroadhesion-based high-payload soft gripper with mechanically strengthened structure. IEEE Trans Ind Electron 69(1):642–651CrossRef Hwang G, Park J, Cortes D, Hyeon K, Kyung K (2022) Electroadhesion-based high-payload soft gripper with mechanically strengthened structure. IEEE Trans Ind Electron 69(1):642–651CrossRef
3.
Zurück zum Zitat Li H, Yao J, Liu C, Zhou P, Xu Y, Zhao Y (2018) A bioinspired soft swallowing robot based on compliant guiding structure. Soft Robot 7(4):491–499CrossRef Li H, Yao J, Liu C, Zhou P, Xu Y, Zhao Y (2018) A bioinspired soft swallowing robot based on compliant guiding structure. Soft Robot 7(4):491–499CrossRef
4.
Zurück zum Zitat Hawkes EW, Blumenschein LH, Greer JD, Okamura AM (2017) A soft robot that navigates its environment through growth. Sci Robot 2(8):3028CrossRef Hawkes EW, Blumenschein LH, Greer JD, Okamura AM (2017) A soft robot that navigates its environment through growth. Sci Robot 2(8):3028CrossRef
5.
Zurück zum Zitat Pang G, Yang G, Heng W, Ye Z, Huang X, Yang H, Pang Z (2021) CoboSkin: soft robot skin with variable stiffness for safer human–robot collaboration. IEEE Trans Ind Electron 68(4):3303–3314CrossRef Pang G, Yang G, Heng W, Ye Z, Huang X, Yang H, Pang Z (2021) CoboSkin: soft robot skin with variable stiffness for safer human–robot collaboration. IEEE Trans Ind Electron 68(4):3303–3314CrossRef
6.
Zurück zum Zitat Laschi C, Mazzolai B, Cianchetti M (2016) Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci Robot 1(1):3690CrossRef Laschi C, Mazzolai B, Cianchetti M (2016) Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci Robot 1(1):3690CrossRef
7.
Zurück zum Zitat Joseph DG, Tania KM, Allison MO, Elliot WH, Soft A (2019) Steerable continuum robot that grows via tip extension. Soft Robot 6(1):95–108CrossRef Joseph DG, Tania KM, Allison MO, Elliot WH, Soft A (2019) Steerable continuum robot that grows via tip extension. Soft Robot 6(1):95–108CrossRef
8.
Zurück zum Zitat Kim Y, Parada GA, Liu S, Zhao X (2019) Ferromagnetic continuum robots. Sci Robot 4(33):7329CrossRef Kim Y, Parada GA, Liu S, Zhao X (2019) Ferromagnetic continuum robots. Sci Robot 4(33):7329CrossRef
9.
Zurück zum Zitat Shabana AA (2018) Continuum-based geometry/analysis approach for flexible and soft robotic systems. Soft Robot 5(5):613–621CrossRef Shabana AA (2018) Continuum-based geometry/analysis approach for flexible and soft robotic systems. Soft Robot 5(5):613–621CrossRef
10.
Zurück zum Zitat Renda F, Giorelli M, Calisti M, Cianchetti M (2014) Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans Robot 30(5):1–14CrossRef Renda F, Giorelli M, Calisti M, Cianchetti M (2014) Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans Robot 30(5):1–14CrossRef
11.
Zurück zum Zitat Renda F, Boyer F, Dias J, Seneviratne L (2018) Discrete Cosserat approach for multisection soft manipulator dynamics. IEEE Trans Robot 34(6):1518–1533CrossRef Renda F, Boyer F, Dias J, Seneviratne L (2018) Discrete Cosserat approach for multisection soft manipulator dynamics. IEEE Trans Robot 34(6):1518–1533CrossRef
12.
Zurück zum Zitat Catalano MG, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A (2014) Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int J Robot Res 33(5):768–782CrossRef Catalano MG, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A (2014) Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int J Robot Res 33(5):768–782CrossRef
13.
Zurück zum Zitat Yang H, Xu M, Li W, Zhang S (2019) Design and implementation of a soft robotic arm driven by SMA coils. IEEE Trans Ind Electron 66(8):6108–6116CrossRef Yang H, Xu M, Li W, Zhang S (2019) Design and implementation of a soft robotic arm driven by SMA coils. IEEE Trans Ind Electron 66(8):6108–6116CrossRef
14.
Zurück zum Zitat Rone WS, Ben-Tzvi P (2014) Continuum robot dynamics utilizing the principle of virtual power. IEEE Trans Robot 30(1):275–287 CrossRef Rone WS, Ben-Tzvi P (2014) Continuum robot dynamics utilizing the principle of virtual power. IEEE Trans Robot 30(1):275–287 CrossRef
15.
Zurück zum Zitat Kang R, Branson DT, Zheng T, Guglielmino E, Caldwell DG (2013) Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures. Bioinspir Biomim 8(3):036008CrossRef Kang R, Branson DT, Zheng T, Guglielmino E, Caldwell DG (2013) Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures. Bioinspir Biomim 8(3):036008CrossRef
16.
Zurück zum Zitat Kang R, Guo Y, Chen L, Branson DT, Dai JS (2016) Design of a pneumatic muscle based continuum robot with embedded tendons. IEEE-ASME Trans Mechatron 22(2):751–761CrossRef Kang R, Guo Y, Chen L, Branson DT, Dai JS (2016) Design of a pneumatic muscle based continuum robot with embedded tendons. IEEE-ASME Trans Mechatron 22(2):751–761CrossRef
17.
Zurück zum Zitat Yang J, Peng H, Zhou W, Zhang J, Wu Z (2021) A modular approach for dynamic modeling of multisegment continuum robots. Mech Mach Theory 165:104429CrossRef Yang J, Peng H, Zhou W, Zhang J, Wu Z (2021) A modular approach for dynamic modeling of multisegment continuum robots. Mech Mach Theory 165:104429CrossRef
18.
Zurück zum Zitat Webster RJ, Jones BA (2010) Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res 29(13):1661–1683CrossRef Webster RJ, Jones BA (2010) Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res 29(13):1661–1683CrossRef
19.
Zurück zum Zitat Yuan H, Zhou L, Xu W (2019) A comprehensive static model of cable-driven multi-section continuum robots considering friction effect. Mech Mach Theory 135:130–149CrossRef Yuan H, Zhou L, Xu W (2019) A comprehensive static model of cable-driven multi-section continuum robots considering friction effect. Mech Mach Theory 135:130–149CrossRef
20.
Zurück zum Zitat Burgner-Kahrs J, Rucker DC, Choset H (2015) Continuum robots for medical applications: a survey. IEEE Trans Robot 31(6):1261–1280CrossRef Burgner-Kahrs J, Rucker DC, Choset H (2015) Continuum robots for medical applications: a survey. IEEE Trans Robot 31(6):1261–1280CrossRef
21.
Zurück zum Zitat Yang HD, Asbeck AT (2020) Design and characterization of a modular hybrid continuum robotics manipulator. IEEE-ASME Trans Mechatron 25(6):2812–2823CrossRef Yang HD, Asbeck AT (2020) Design and characterization of a modular hybrid continuum robotics manipulator. IEEE-ASME Trans Mechatron 25(6):2812–2823CrossRef
22.
Zurück zum Zitat Misher MK, Samantaray AK, Chakraborty G, Jain A, Pathak P, Merzouki R (2019) Dynamic modelling of an elephant trunk like flexible bionic manipulator. In: Proceedings of the ASME 2019 international mechanical engineering congress and exposition (IMECE) Misher MK, Samantaray AK, Chakraborty G, Jain A, Pathak P, Merzouki R (2019) Dynamic modelling of an elephant trunk like flexible bionic manipulator. In: Proceedings of the ASME 2019 international mechanical engineering congress and exposition (IMECE)
23.
Zurück zum Zitat Greer JD, Morimoto TK, Okamura AM, Hawkes EW (2017) Series pneumatic artificial muscles (sPAMs) and application to a soft continuum robot. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5503–5510 Greer JD, Morimoto TK, Okamura AM, Hawkes EW (2017) Series pneumatic artificial muscles (sPAMs) and application to a soft continuum robot. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5503–5510
24.
Zurück zum Zitat Greer JD, Morimoto TK, Okamura AM, Hawkes EW, Soft A (2019) Steerable continuum robot that grows via tip extension. Soft Robot 6(1):95–108CrossRef Greer JD, Morimoto TK, Okamura AM, Hawkes EW, Soft A (2019) Steerable continuum robot that grows via tip extension. Soft Robot 6(1):95–108CrossRef
25.
Zurück zum Zitat Marchese AD, Rus D (2015) Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. Int J Robot Res 35(7):840–869CrossRef Marchese AD, Rus D (2015) Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. Int J Robot Res 35(7):840–869CrossRef
26.
Zurück zum Zitat Webster RJ, Romano JM, Cowan NJ (2009) Mechanics of precurved-tube continuum robots. IEEE Trans Robot 25(1):67–78CrossRef Webster RJ, Romano JM, Cowan NJ (2009) Mechanics of precurved-tube continuum robots. IEEE Trans Robot 25(1):67–78CrossRef
27.
Zurück zum Zitat Rucker DC, Webster RJ, Chirikjian GS (2010) Equilibrium conformations of concentric—tube continuum robots. Int J Robot Res 29(10):1263–1280CrossRef Rucker DC, Webster RJ, Chirikjian GS (2010) Equilibrium conformations of concentric—tube continuum robots. Int J Robot Res 29(10):1263–1280CrossRef
28.
Zurück zum Zitat Escande C, Chettibi T, Merzouki R, Coelen V, Pathak PM (2014) Kinematic calibration of a multisection bionic manipulator. IEEE-ASME Trans Mechatron 20(2):663–674CrossRef Escande C, Chettibi T, Merzouki R, Coelen V, Pathak PM (2014) Kinematic calibration of a multisection bionic manipulator. IEEE-ASME Trans Mechatron 20(2):663–674CrossRef
29.
Zurück zum Zitat Gong Z, Fang X, Chen X, Cheng J, Xie Z, Liu J, Chen B, Yang H, Kong S, Hao Y, Wang T, Yu J, Wen L (2020) A soft manipulator for efficient delicate grasping in shallow water: modeling, control, and real-world experiments. Int J Robot Res 40(1):449–469CrossRef Gong Z, Fang X, Chen X, Cheng J, Xie Z, Liu J, Chen B, Yang H, Kong S, Hao Y, Wang T, Yu J, Wen L (2020) A soft manipulator for efficient delicate grasping in shallow water: modeling, control, and real-world experiments. Int J Robot Res 40(1):449–469CrossRef
30.
Zurück zum Zitat Yang C, Geng S, Walker I, Branson DT, Liu J, Dai J, Kang R (2020) Geometric constraint-based modeling and analysis of a novel continuum robot with shape memory alloy initiated variable stiffness. Int J Robot Res 39(14):1620–1634CrossRef Yang C, Geng S, Walker I, Branson DT, Liu J, Dai J, Kang R (2020) Geometric constraint-based modeling and analysis of a novel continuum robot with shape memory alloy initiated variable stiffness. Int J Robot Res 39(14):1620–1634CrossRef
31.
Zurück zum Zitat Godage S, Medrano-Cerda GA, Branson DT, Guglielmino E, Caldwell DG (2015) Modal kinematics for multisection continuum arms. Bioinspir Biomim 10(3):035002CrossRef Godage S, Medrano-Cerda GA, Branson DT, Guglielmino E, Caldwell DG (2015) Modal kinematics for multisection continuum arms. Bioinspir Biomim 10(3):035002CrossRef
32.
Zurück zum Zitat Gonthina PS, Kapadia AD, Godage IS, Walker ID (2019) Modeling variable curvature parallel continuum robots using Euler curves. In: 2019 International conference on robotics and automation (ICRA), pp 1679–1685 Gonthina PS, Kapadia AD, Godage IS, Walker ID (2019) Modeling variable curvature parallel continuum robots using Euler curves. In: 2019 International conference on robotics and automation (ICRA), pp 1679–1685
33.
Zurück zum Zitat Singh I, Amara Y, Melingui A, Mani Pathak P, Merzouki R (2018) Modeling of continuum manipulators using pythagorean hodograph curves. Soft Robot 5(4):425–442CrossRef Singh I, Amara Y, Melingui A, Mani Pathak P, Merzouki R (2018) Modeling of continuum manipulators using pythagorean hodograph curves. Soft Robot 5(4):425–442CrossRef
34.
Zurück zum Zitat Bieze TM, Largilliere F, Kruszewski A, Zhang Z, Merzouki R, Duriez C (2018) Finite element method-based kinematics and closedloop control of soft, continuum manipulators. Soft Robot 5(3):348–364CrossRef Bieze TM, Largilliere F, Kruszewski A, Zhang Z, Merzouki R, Duriez C (2018) Finite element method-based kinematics and closedloop control of soft, continuum manipulators. Soft Robot 5(3):348–364CrossRef
35.
Zurück zum Zitat Huang X, Zou J, Gu G (2021) Kinematic modeling and control of variable curvature continuum robots. IEEE-ASME Trans Mechatron 26(6):3175–3185CrossRef Huang X, Zou J, Gu G (2021) Kinematic modeling and control of variable curvature continuum robots. IEEE-ASME Trans Mechatron 26(6):3175–3185CrossRef
36.
Zurück zum Zitat Godage S, Wirz R, Walker ID, Webster RJ (2015) Accurate and efficient dynamics for variable-length continuum arms: a center of gravity approach. Soft Robot 2(3):96–106CrossRef Godage S, Wirz R, Walker ID, Webster RJ (2015) Accurate and efficient dynamics for variable-length continuum arms: a center of gravity approach. Soft Robot 2(3):96–106CrossRef
37.
Zurück zum Zitat Coevoet E, Escande A, Duriez C (2017) Optimization-based inverse model of soft robots with contact handling. IEEE Robot Autom Let 2(3):1413–1419CrossRef Coevoet E, Escande A, Duriez C (2017) Optimization-based inverse model of soft robots with contact handling. IEEE Robot Autom Let 2(3):1413–1419CrossRef
38.
Zurück zum Zitat Pall E,Sieverling A, Brock O (2018) Contingent contact-based motion planning. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 6615–6621 Pall E,Sieverling A, Brock O (2018) Contingent contact-based motion planning. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 6615–6621
39.
Zurück zum Zitat Sieverling A, Eppner C, Wolff F, Brock O (2017) Interleaving motion in contact and in free space for planning under uncertainty. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4011–4073 Sieverling A, Eppner C, Wolff F, Brock O (2017) Interleaving motion in contact and in free space for planning under uncertainty. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4011–4073
40.
Zurück zum Zitat Zhang Z, Dequidt J, Back J, Liu H, Duriez C (2019) Motion control of cable-driven continuum catheter robot through contacts. IEEE Robot Autom Lett 4(2):1852–1859CrossRef Zhang Z, Dequidt J, Back J, Liu H, Duriez C (2019) Motion control of cable-driven continuum catheter robot through contacts. IEEE Robot Autom Lett 4(2):1852–1859CrossRef
41.
Zurück zum Zitat Yip MC, Camarillo DB (2014) Model-less feedback control of continuum manipulators in constrained environments. IEEE Trans Robot 30(4):880–889CrossRef Yip MC, Camarillo DB (2014) Model-less feedback control of continuum manipulators in constrained environments. IEEE Trans Robot 30(4):880–889CrossRef
42.
Zurück zum Zitat Chen Y, Wang L, Galloway K, Godage I, Simaan N, Barth E (2021) Modal-based kinematics and contact detection of soft robots. Soft Robot 8(3):298–309CrossRef Chen Y, Wang L, Galloway K, Godage I, Simaan N, Barth E (2021) Modal-based kinematics and contact detection of soft robots. Soft Robot 8(3):298–309CrossRef
43.
Zurück zum Zitat DellaSantina C, Katzschmann RK, Bicchi A, Rus D (2020) Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment. Int J Robot Res 39(4):490–513CrossRef DellaSantina C, Katzschmann RK, Bicchi A, Rus D (2020) Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment. Int J Robot Res 39(4):490–513CrossRef
44.
Zurück zum Zitat Greer D, Blumenschein LH, Alterovitz R, Hawkes EW, Okamura AM (2020) Robust navigation of a soft growing robot by exploiting contact with the environment. Int J Robot Res 39(14):1724–1738CrossRef Greer D, Blumenschein LH, Alterovitz R, Hawkes EW, Okamura AM (2020) Robust navigation of a soft growing robot by exploiting contact with the environment. Int J Robot Res 39(14):1724–1738CrossRef
45.
Zurück zum Zitat Merzouki R, Samantaray AK, Pathak PM, Ould Bouamama B (2013) Rigid body, flexible body and micro electromechanical systems. In: Intelligent mechatronic systems: modelling, control and diagnosis. Springer London, UK, pp 313–315 Merzouki R, Samantaray AK, Pathak PM, Ould Bouamama B (2013) Rigid body, flexible body and micro electromechanical systems. In: Intelligent mechatronic systems: modelling, control and diagnosis. Springer London, UK, pp 313–315
46.
Zurück zum Zitat Li S, Vogt DM, Rus D, Wood RJ (2017) Fluid-driven origami-inspired artificial muscles. In: Proceedings of the National Academy of Sciences of the United States of America (PNAS), pp 13132–13137 Li S, Vogt DM, Rus D, Wood RJ (2017) Fluid-driven origami-inspired artificial muscles. In: Proceedings of the National Academy of Sciences of the United States of America (PNAS), pp 13132–13137
47.
Zurück zum Zitat Lee G, Rodrigue H (2019) Origami-based vacuum pneumatic artificial muscles with large contraction ratios. Soft Robot 6(1):109–117CrossRef Lee G, Rodrigue H (2019) Origami-based vacuum pneumatic artificial muscles with large contraction ratios. Soft Robot 6(1):109–117CrossRef
Metadaten
Titel
Modeling of continuum robots with environmental constraints
verfasst von
Peng Chen
Yuwang Liu
Tingwen Yuan
Wenping Shi
Publikationsdatum
27.06.2023
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2024
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-023-01866-z