Skip to main content
Erschienen in: Computational Mechanics 2/2014

01.08.2014 | Original Paper

Modeling of dynamic crack branching by enhanced extended finite element method

verfasst von: Dandan Xu, Zhanli Liu, Xiaoming Liu, Qinglei Zeng, Zhuo Zhuang

Erschienen in: Computational Mechanics | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The conventional extended finite element method (XFEM) is enhanced in this paper to simulate dynamic crack branching, which is a top challenge issue in fracture mechanics and finite element method. XFEM uses the enriched shape functions with special characteristics to represent the discontinuity in computation field. In order to describe branched cracks, it is necessary to set up the additional enrichment. Here we have developed two kinds of branched elements, namely the “element crossed by two separated cracks” and “element embedded by a junction”. Another series of enriched degrees of freedom are introduced to seize the additional discontinuity in the elements. A shifted enrichment scheme is used to avoid the treatment of blending element. Correspondingly a new mass lumping method is developed for the branched elements based on the kinetic conservation. The derivation of the mass matrix of a four-node quadrilateral element which contains two strong discontinuities is specially presented. Then by choosing crack speed as the branching criterion, the branching process of a single mode I crack is simulated. The results including the branching angle and propagation routes are compared with that obtained by the conventionally used element deletion method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture-III. On steady-state crack propagation and crack branching. Int J Fract 26:141–154CrossRef Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture-III. On steady-state crack propagation and crack branching. Int J Fract 26:141–154CrossRef
6.
8.
Zurück zum Zitat Eshelby JD (1999) Energy relations and the energy-momentum tensor in continuum mechanics. Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids. 82–119. doi:10.1007/978-3-642-59938-5_5 Eshelby JD (1999) Energy relations and the energy-momentum tensor in continuum mechanics. Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids. 82–119. doi:10.​1007/​978-3-642-59938-5_​5
10.
13.
Zurück zum Zitat Bolander JE Jr, Saito S (1998) Fracture analyses using spring networks with random geometry. Eng Fract Mech 61:569–591CrossRef Bolander JE Jr, Saito S (1998) Fracture analyses using spring networks with random geometry. Eng Fract Mech 61:569–591CrossRef
14.
Zurück zum Zitat Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434CrossRefMATH Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434CrossRefMATH
19.
Zurück zum Zitat Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620MathSciNetCrossRefMATH Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620MathSciNetCrossRefMATH
20.
Zurück zum Zitat Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150CrossRefMATH Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150CrossRefMATH
21.
Zurück zum Zitat Song J-H, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67:868–893. doi:10.1002/nme.1652 Song J-H, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67:868–893. doi:10.​1002/​nme.​1652
23.
Zurück zum Zitat Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48:1741–1760CrossRefMATH Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48:1741–1760CrossRefMATH
24.
Zurück zum Zitat Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58:1873–1905. doi:10.1002/nme.941 CrossRefMATH Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58:1873–1905. doi:10.​1002/​nme.​941 CrossRefMATH
29.
Zurück zum Zitat Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51:943–960CrossRefMATH Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51:943–960CrossRefMATH
30.
31.
32.
Zurück zum Zitat Menouillard T, Réthoré J, Combescure A, Bung H (2006) Efficient explicit time stepping for the eXtended finite element method (X-FEM). Int J Numer Methods Eng 68:911–939. doi:10.1002/nme.1718 CrossRefMATH Menouillard T, Réthoré J, Combescure A, Bung H (2006) Efficient explicit time stepping for the eXtended finite element method (X-FEM). Int J Numer Methods Eng 68:911–939. doi:10.​1002/​nme.​1718 CrossRefMATH
33.
Zurück zum Zitat Chinese Aeronautical Establishment (1981) Stress intensity factor handbook (in Chinese). Science press, Beijing Chinese Aeronautical Establishment (1981) Stress intensity factor handbook (in Chinese). Science press, Beijing
34.
Zurück zum Zitat Freund LB (1990) Dynamic fracture mechanics. Cambridge monographs on mechanics and applied mathematics. Cambridge University Press, CambridgeCrossRef Freund LB (1990) Dynamic fracture mechanics. Cambridge monographs on mechanics and applied mathematics. Cambridge University Press, CambridgeCrossRef
36.
Zurück zum Zitat Ramulu M, Kobayashi AS (1985) Mechanics of crack curving and branching—a dynamic fracture analysis. Int J Fract 27:187–201CrossRef Ramulu M, Kobayashi AS (1985) Mechanics of crack curving and branching—a dynamic fracture analysis. Int J Fract 27:187–201CrossRef
37.
Zurück zum Zitat Ravi-Chandar K (1998) Dynamic fracture of nominally brittle materials. Int J Fract 90:83–102CrossRef Ravi-Chandar K (1998) Dynamic fracture of nominally brittle materials. Int J Fract 90:83–102CrossRef
Metadaten
Titel
Modeling of dynamic crack branching by enhanced extended finite element method
verfasst von
Dandan Xu
Zhanli Liu
Xiaoming Liu
Qinglei Zeng
Zhuo Zhuang
Publikationsdatum
01.08.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2014
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1001-9

Weitere Artikel der Ausgabe 2/2014

Computational Mechanics 2/2014 Zur Ausgabe

Neuer Inhalt