Skip to main content

2018 | OriginalPaper | Buchkapitel

Modeling of Electrostatically Actuated Microplates

verfasst von : Libo Zhao, Zhuangde Jiang, Zhikang Li, Yihe Zhao

Erschienen in: Micro Electro Mechanical Systems

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrostatically actuated microplates have been widely used in various microsensors and actuators actuated by electrostatic force. Deep knowledge of the microplates under electrostatic force and other physical quantities is extremely important for the design and optimization of the microsensors and actuators, which can largely reduce the cost and time to develop the proposed devices compared with over and over fabrication and testing in laboratory. This chapter gives a detailed illustration on the modeling methods of electrostatically actuated microplates. Three types of modeling methods are mainly discussed, that is, finite element modeling, lumped electromechanical modeling, and distributed electromechanical modeling. For the finite element modeling method, the electromechanical elements used to model the electrostatic domain and the establishment methods of finite element electromechanical models are given for electrostatically actuated microplates. The lumped electromechanical modeling method models the electrostatically actuated microplate as one-dimensional spring-mass-capacitor system, which can qualitatively analyze the collapse voltage (or pull-in voltage) and the reason why the resonant frequency shifts under electrostatic force. For the distributed electromechanical modeling method, the electromechanical coupling models for circular and rectangular microplates under electrostatic force and hydrostatic pressure are established, and explicit theoretical expressions for collapse voltage, static deflection, and capacitance variation are proposed. In addition, the distributed modeling method also focuses on the dynamic behavior analysis, especially the resonant frequency analysis of the electrostatically actuated microplate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmad B, Pratap R (2010) Elasto-electrostatic analysis of circular microplates used in capacitive micromachined ultrasonic transducers[J]. IEEE Sensors J 10(11):1767–1773CrossRef Ahmad B, Pratap R (2010) Elasto-electrostatic analysis of circular microplates used in capacitive micromachined ultrasonic transducers[J]. IEEE Sensors J 10(11):1767–1773CrossRef
Zurück zum Zitat Bozkurt A, Ladabaum I, Atalar A et al (1999) Theory and analysis of electrode size optimization for capacitive microfabricated ultrasonic transducers[J]. IEEE Trans Ultrason Ferroelectr Freq Control 46(6):1364–1374CrossRef Bozkurt A, Ladabaum I, Atalar A et al (1999) Theory and analysis of electrode size optimization for capacitive microfabricated ultrasonic transducers[J]. IEEE Trans Ultrason Ferroelectr Freq Control 46(6):1364–1374CrossRef
Zurück zum Zitat Chao PCP, Chiu CW, Tsai CY (2006) A novel method to predict the pull-in voltage in a closed form for micro-plates actuated by a distributed electrostatic force[J]. J Micromech Microeng 16(5):986CrossRef Chao PCP, Chiu CW, Tsai CY (2006) A novel method to predict the pull-in voltage in a closed form for micro-plates actuated by a distributed electrostatic force[J]. J Micromech Microeng 16(5):986CrossRef
Zurück zum Zitat Chiou DY, Chen MY, Chang MW et al (2008) Finite element modeling, characterization, and optimization design for the polymer-typed capacitive micro-arrayed ultrasonic transducer[J]. Microsyst Technol 14(6):787–797CrossRef Chiou DY, Chen MY, Chang MW et al (2008) Finite element modeling, characterization, and optimization design for the polymer-typed capacitive micro-arrayed ultrasonic transducer[J]. Microsyst Technol 14(6):787–797CrossRef
Zurück zum Zitat Elgamel HE (1995) Closed-form expressions for the relationships between stress, diaphragm deflection, and resistance change with pressure in silicon piezoresistive pressure sensors[J]. Sensors Actuators A Phys 50(1–2):17–22CrossRef Elgamel HE (1995) Closed-form expressions for the relationships between stress, diaphragm deflection, and resistance change with pressure in silicon piezoresistive pressure sensors[J]. Sensors Actuators A Phys 50(1–2):17–22CrossRef
Zurück zum Zitat Elgamel HEA (1999) A simple and efficient technique for the simulation of capacitive pressure transducers[J]. Sensors Actuators A Phys 77(3):183–186CrossRef Elgamel HEA (1999) A simple and efficient technique for the simulation of capacitive pressure transducers[J]. Sensors Actuators A Phys 77(3):183–186CrossRef
Zurück zum Zitat Fragiacomo G, Ansbæk T, Pedersen T et al (2010) Analysis of small deflection touch mode behavior in capacitive pressure sensors[J]. Sensors Actuators A Phys 161(1):114–119CrossRef Fragiacomo G, Ansbæk T, Pedersen T et al (2010) Analysis of small deflection touch mode behavior in capacitive pressure sensors[J]. Sensors Actuators A Phys 161(1):114–119CrossRef
Zurück zum Zitat Francais O, Dufour I (1999) Normalized abacus for the global behavior of diaphragms: pneumatic, electrostatic, piezoelectric or electromagnetic actuation[J]. J Model Simul Microsyst 2(1):149–160 Francais O, Dufour I (1999) Normalized abacus for the global behavior of diaphragms: pneumatic, electrostatic, piezoelectric or electromagnetic actuation[J]. J Model Simul Microsyst 2(1):149–160
Zurück zum Zitat Kagawa Y (1974) Vibrator sensors for atmospheric pressure, temperature, and humidity measurements[J]. J Acoust Soc Am 56(5):1644–1649CrossRef Kagawa Y (1974) Vibrator sensors for atmospheric pressure, temperature, and humidity measurements[J]. J Acoust Soc Am 56(5):1644–1649CrossRef
Zurück zum Zitat Kerrour F, Hobar F (2006) A novel numerical approach for the modeling of the square shaped silicon membrane[J]. Semicond Phys Quantum Electron Optoelectron 9(4):52–57 Kerrour F, Hobar F (2006) A novel numerical approach for the modeling of the square shaped silicon membrane[J]. Semicond Phys Quantum Electron Optoelectron 9(4):52–57
Zurück zum Zitat Ladabaum I, Jin X, Soh HT et al (1998) Surface micromachined capacitive ultrasonic transducers[J]. IEEE Trans Ultrason Ferroelectr Freq Control 45(3):678–690CrossRef Ladabaum I, Jin X, Soh HT et al (1998) Surface micromachined capacitive ultrasonic transducers[J]. IEEE Trans Ultrason Ferroelectr Freq Control 45(3):678–690CrossRef
Zurück zum Zitat Li ZK, Zhao LB, Ye ZY et al (2013) Resonant frequency analysis on an electrostatically actuated microplate under uniform hydrostatic pressure[J]. J Phys D Appl Phys 46(19):195108CrossRef Li ZK, Zhao LB, Ye ZY et al (2013) Resonant frequency analysis on an electrostatically actuated microplate under uniform hydrostatic pressure[J]. J Phys D Appl Phys 46(19):195108CrossRef
Zurück zum Zitat Li ZK, Zhao LZ, Jiang ZD et al (2015a) An improved method for the mechanical behavior analysis of electrostatically actuated microplates under uniform hydrostatic pressure[J]. J Microelectromech Syst 24(2):474–485CrossRef Li ZK, Zhao LZ, Jiang ZD et al (2015a) An improved method for the mechanical behavior analysis of electrostatically actuated microplates under uniform hydrostatic pressure[J]. J Microelectromech Syst 24(2):474–485CrossRef
Zurück zum Zitat Li ZK, Zhao LB, Jiang ZD et al (2015b) Mechanical behavior analysis on electrostatically actuated rectangular microplates[J]. J Micromech Microeng 25(3):035007CrossRef Li ZK, Zhao LB, Jiang ZD et al (2015b) Mechanical behavior analysis on electrostatically actuated rectangular microplates[J]. J Micromech Microeng 25(3):035007CrossRef
Zurück zum Zitat Liao LD, Chao PCP, Huang CW et al (2009) DC dynamic and static pull-in predictions and analysis for electrostatically actuated clamped circular micro-plates based on a continuous model[J]. J Micromech Microeng 20(2):025013CrossRef Liao LD, Chao PCP, Huang CW et al (2009) DC dynamic and static pull-in predictions and analysis for electrostatically actuated clamped circular micro-plates based on a continuous model[J]. J Micromech Microeng 20(2):025013CrossRef
Zurück zum Zitat Nabian A, Rezazadeh G, Haddad-derafshi M et al (2008) Mechanical behavior of a circular micro plate subjected to uniform hydrostatic and non-uniform electrostatic pressure[J]. Microsyst Technol 14(2):235–240CrossRef Nabian A, Rezazadeh G, Haddad-derafshi M et al (2008) Mechanical behavior of a circular micro plate subjected to uniform hydrostatic and non-uniform electrostatic pressure[J]. Microsyst Technol 14(2):235–240CrossRef
Zurück zum Zitat Nayfeh AH (2000) Nonlinear interactions: analytical, computational and experimental methods[M]. New York, NY, Wiley Nayfeh AH (2000) Nonlinear interactions: analytical, computational and experimental methods[M]. New York, NY, Wiley
Zurück zum Zitat Nayfeh AH, Mook DT (1979) Nonlinear oscillations[M]. New York, Wiley Nayfeh AH, Mook DT (1979) Nonlinear oscillations[M]. New York, Wiley
Zurück zum Zitat Nayfeh AH, Younis MI, Abdel-Rahman EM (2005) Reduced-order models for MEMS applications[J]. Nonlinear Dyn 41(1):211–236MathSciNetCrossRef Nayfeh AH, Younis MI, Abdel-Rahman EM (2005) Reduced-order models for MEMS applications[J]. Nonlinear Dyn 41(1):211–236MathSciNetCrossRef
Zurück zum Zitat Osterberg PM. (1995) Electrostatically actuated microelectromechanical test structures for material property measurement[D]. Massachusetts Institute of Technology Osterberg PM. (1995) Electrostatically actuated microelectromechanical test structures for material property measurement[D]. Massachusetts Institute of Technology
Zurück zum Zitat Pelesko JA, Bernstein DH (2002) Modeling Mems and Nems[M]. Boca Raton (FL): Chapman & Hall, CRC Press Pelesko JA, Bernstein DH (2002) Modeling Mems and Nems[M]. Boca Raton (FL): Chapman & Hall, CRC Press
Zurück zum Zitat Rahman M, Chowdhury S (2010) A new deflection shape function for square membrane CMUT design[C]. In: IEEE international symposium on circuits and systems(ISCAS), Paris, 30 May–02 June, pp 2019–2022 Rahman M, Chowdhury S (2010) A new deflection shape function for square membrane CMUT design[C]. In: IEEE international symposium on circuits and systems(ISCAS), Paris, 30 May–02 June, pp 2019–2022
Zurück zum Zitat Rahman MM, Chowdhury S (2011) Square diaphragm CMUT capacitance calculation using a new deflection shape function[J]. J Sensors, 2011 Rahman MM, Chowdhury S (2011) Square diaphragm CMUT capacitance calculation using a new deflection shape function[J]. J Sensors, 2011
Zurück zum Zitat Shahiri-Tabarestani M, Ganji BA, Sabbaghi-Nadooshan R (2012) Design and simulation of high sensitive capacitive pressure sensor with slotted diaphragm[C]. In: IEEE international conference on biomedical engineering (ICoBE), Penang, 27–28 Feb, pp 484–489 Shahiri-Tabarestani M, Ganji BA, Sabbaghi-Nadooshan R (2012) Design and simulation of high sensitive capacitive pressure sensor with slotted diaphragm[C]. In: IEEE international conference on biomedical engineering (ICoBE), Penang, 27–28 Feb, pp 484–489
Zurück zum Zitat Soedel W (2004) Vibrations of shells and plates[M]. Marcel Dekker, New York, CRC Press Soedel W (2004) Vibrations of shells and plates[M]. Marcel Dekker, New York, CRC Press
Zurück zum Zitat Talebian S, Rezazadeh G, Fathalilou M et al (2010) Effect of temperature on pull-in voltage and natural frequency of an electrostatically actuated microplate[J]. Mechatronics 20(6):666–673CrossRef Talebian S, Rezazadeh G, Fathalilou M et al (2010) Effect of temperature on pull-in voltage and natural frequency of an electrostatically actuated microplate[J]. Mechatronics 20(6):666–673CrossRef
Zurück zum Zitat Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells[M]. New York, London, McGraw-Hill Book Company, Inc. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells[M]. New York, London, McGraw-Hill Book Company, Inc.
Zurück zum Zitat Ventsel E, Krauthammer T (2001) Thin plates and shells: theory: analysis, and applications[M]. New York : Marcel Dekker, CRC Press Ventsel E, Krauthammer T (2001) Thin plates and shells: theory: analysis, and applications[M]. New York : Marcel Dekker, CRC Press
Zurück zum Zitat Vogl GW, Nayfeh AH (2005) A reduced-order model for electrically actuated clamped circular plates[J]. J Micromech Microeng 15(4):684CrossRef Vogl GW, Nayfeh AH (2005) A reduced-order model for electrically actuated clamped circular plates[J]. J Micromech Microeng 15(4):684CrossRef
Zurück zum Zitat Yaralioglu GG, Ergun AS, Bayram B et al (2003) Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers[J]. IEEE Trans Ultrason Ferroelectr Freq Control 50(4):449–456CrossRef Yaralioglu GG, Ergun AS, Bayram B et al (2003) Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers[J]. IEEE Trans Ultrason Ferroelectr Freq Control 50(4):449–456CrossRef
Zurück zum Zitat Younis MI (2011) MEMS linear and nonlinear statics and dynamics[M]. Boston, MA, Springer Science & Business MediaCrossRef Younis MI (2011) MEMS linear and nonlinear statics and dynamics[M]. Boston, MA, Springer Science & Business MediaCrossRef
Zurück zum Zitat Younis MI, Nayfeh AH (2007) Simulation of squeeze-film damping of microplates actuated by large electrostatic load[J]. J Comput Nonlinear Dyn 2(3):232–241CrossRef Younis MI, Nayfeh AH (2007) Simulation of squeeze-film damping of microplates actuated by large electrostatic load[J]. J Comput Nonlinear Dyn 2(3):232–241CrossRef
Zurück zum Zitat Younis MI, Abdel-Rahman EM, Nayfeh A (2003) A reduced-order model for electrically actuated microbeam-based MEMS[J]. J Microelectromech Syst 12(5):672–680CrossRef Younis MI, Abdel-Rahman EM, Nayfeh A (2003) A reduced-order model for electrically actuated microbeam-based MEMS[J]. J Microelectromech Syst 12(5):672–680CrossRef
Zurück zum Zitat Zhao X, Abdel-Rahman EM, Nayfeh AH (2004) A reduced-order model for electrically actuated microplates[J]. J Micromech Microeng 14(7):900CrossRef Zhao X, Abdel-Rahman EM, Nayfeh AH (2004) A reduced-order model for electrically actuated microplates[J]. J Micromech Microeng 14(7):900CrossRef
Zurück zum Zitat Zhou MX, Huang QA, Qin M (2005) Modeling, design and fabrication of a triple-layered capacitive pressure sensor[J]. Sensors Actuators A Phys 117(1):71–81CrossRef Zhou MX, Huang QA, Qin M (2005) Modeling, design and fabrication of a triple-layered capacitive pressure sensor[J]. Sensors Actuators A Phys 117(1):71–81CrossRef
Metadaten
Titel
Modeling of Electrostatically Actuated Microplates
verfasst von
Libo Zhao
Zhuangde Jiang
Zhikang Li
Yihe Zhao
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5945-2_4

Neuer Inhalt