Useful energy can be extracted from agricultural waste and residues instead of the uncontrolled burning that causes severe harm to the environment. Rice straw can be combusted in a fluidized bed producing useful heat with better control of emissions. One of the most promising alternatives is converting biomass into a more energy-dense fuel with a higher heating value through gasification. This study presents a one-dimensional model of atmospheric bubbling fluidized bed and investigates the effect of different operating parameters on the temperature profile and gas species concentrations through the fluidized bed in the gasification process through concentration and energy balance equations. The model is validated with data and measurements from the literature. The temperature profiles show a peak temperature value occurring early in the freeboard zone. Both the value and position of the peak occurrence are affected by the operation and fluidization condition.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Marey HS et al (2010) Study of the formation of the “black cloud” and its dynamics over Cairo, Egypt, using MODIS and MISR sensors. J Geophys Res 115(D21)
4.
El-Emam RS, Dincer I, El-Emam SH (2014) Efficiency and environmental assessment of biomass gasification for hydrogen and power production. In: Global conference on global warming, Beijing
5.
Shaaban W (2010) Fluidized bed combustion of rice straw and Bitumen pellets. MSc thesis, Mansoura University, Egypt
6.
Okasha FM, El-Emam SH, Zaatar G (2005) Fluidized bed combustion of an agriculture waste, case study: combustion of rice straw. Mansoura Eng J 30(2):M1–M12
7.
Basu P (2006) Combustion and gasification in fluidized bed. CRC, Boca Raton
CrossRef
8.
Okasha F (2007) Modeling combustion of straw–bitumen pellets in a fluidized bed. Fuel Process Technol 88(3):281–293
MathSciNetCrossRef
9.
Nemtsov DA, Zabaniotou A (2008) Mathematical modelling and simulation approaches of agricultural residues air gasification in a bubbling fluidized bed reactor. Chem Eng J 143(1–3):10–31
CrossRef
10.
Radmanesh R, Chaouki J, Guy C (2006) Biomass gasification in a bubbling fluidized bed reactor: experiments and modeling. AIChE J 52(12):4258–4272
CrossRef
Kunii D, Levenspiel O (1991) Fluidization engineering. Butterworth Heinemann, Boston
13.
Davidson JF, Harrison O (1963) Fluidized particles. Cambridge University Press, Cambridge
14.
Kaushal P, Abedi J, Mahinpey N (2010) A comprehensive mathematical model for biomass gasification in a bubbling fluidized bed reactor. Fuel 89(12):3650–3661
CrossRef
15.
Gómez-Barea A, Leckner B (2010) Modeling of biomass gasification in fluidized bed. Progr Energy Combustion Sci 36(4):444–509
CrossRef
16.
Pemberton ST, Davidson JF (1984) Turbulence in the freeboard of a gas-fluidised bed: the significance of ghost bubbles. Chem Eng Sci 39(5):829–840
CrossRef
17.
Milioli FE, Foster PJ (1995) Entrainment and elutriation modelling in bubbling fluidized beds. Powder Technol 83(3):233–244
CrossRef
18.
Chirone R et al (1999) Fluidized bed combustion of high-volatile solid fuels: an assessment of char attrition and volatile matter segregation. In: The 15th international conference on FBC, ASME
19.
Petersen I, Werther J (2005) Experimental investigation and modeling of gasification of sewage sludge in the circulating fluidized bed. Chem Eng Process 44(7):717–736
CrossRef
20.
Philippek C et al (1997) NOx formation and reduction during combustion of wet sewage sludge in the circulating fluidized bed—measurement and simulation. In: 14th international conference on FBC
21.
Howard JB, Williams GC, Fine DH (1973) Kinetics of carbon monoxide oxidation in postflame gases. International Symposium on Combustion 14(1):975–986
CrossRef
22.
Leckner B, Palchonok GI, Andersson BA (1992) Representation of heat and mass transfer of active particles. In: The IEA-FBC, mathematical modelling meeting. Turku, Finland
23.
Salatino P, Scala F, Chirone R (1998) Fluidized-bed combustion of a biomass char: the influence of carbon attrition and fines postcombustion on fixed carbon conversion. In: 27th symposium on combustion. The Combustion Institute
24.
Scala F, Chirone R (2006) Combustion and attrition of biomass chars in a fluidized bed. Energy Fuels 20:91–102
CrossRef
25.
Fiorentino M, Marzocchella A, Salatino P (1997) Segregation of fuel particles and volatile matter during devolatilization in a fluidized bed reactor—I. Model development. Chem Eng Sci 52(12):1893–1908
CrossRef
26.
El-Emam RS, Okasha FM, El-Emam SH (2014b) Clean combustion of low quality fuel in fluidized bed combustor. In: Dincer I, Midilli A, Kucuk H (eds) Progress in sustainable energy technologies: creating sustainable development, vol II. Springer, Geneva, pp 531–546
27.
Luecke K, Hartge E, Werther J (2004) A 3D model of combustion in large-scale circulating fluidized bed boilers. Int J Chem Reactor Eng 2(1)
28.
Bryden KM, Ragland K (1996) Numerical modeling of deep fixed bed combustor. Energy Fuel 10:269–275
CrossRef
29.
Biba V et al (1978) Mathematical modeling for the gasification of coal under pressure. Ind Eng Chem Process Des Dev 17:92–98
CrossRef
Über dieses Kapitel
Titel
Modeling of Fluidized Bed Gasification of Rice Straw in Egypt
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Die Entwicklung des mitteleuropäischen Energiesystems und insbesondere die Weiterentwicklung der Energieinfrastruktur sind konfrontiert mit einer stetig steigenden Diversität an Herausforderungen, aber auch mit einer zunehmenden Komplexität in den Lösungsoptionen. Vor diesem Hintergrund steht die Weiterentwicklung von Hybridnetzen symbolisch für das ganze sich in einer Umbruchsphase befindliche Energiesystem: denn der Notwendigkeit einer Schaffung und Bildung der Hybridnetze aus systemischer und volkswirtschaftlicher Perspektive steht sozusagen eine Komplexitätsfalle gegenüber, mit der die Branche in der Vergangenheit in dieser Intensität nicht konfrontiert war. Jetzt gratis downloaden!