Skip to main content

2014 | OriginalPaper | Buchkapitel

11. Modeling of Micromachining

verfasst von : Angelos P. Markopoulos, Dimitrios E. Manolakos

Erschienen in: Modern Mechanical Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Micromachining emerges as a key technology for the future of manufacturing due to its many applications in miniaturization but also for macro scale components with features in the micro world, e.g. microgrooves or microholes. However, phenomena in the microscopic level are quite different from the ones encountered in traditional machining and thus the analysis of micromachining raises difficulties. Since the use of experiments is costly, difficult to perform and it is hard to measure parameters at this level, modeling is considered the best alternative for performing the required analysis. In this chapter a review of the modeling methods used in micromachining is provided. Most of the chapter is dedicated to mechanical micromachining and its modeling and simulation via finite elements; this is because this kind of micromachining exhibits the most differences in the microworld with size effect and minimum chip thickness being topics of great interest and because this method has proven to be the favorite for many research groups worldwide. The chapter closes with a brief discussion on other modeling methods and micromachining processes and a wide reference list for all the topics is included.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Byrne G, Dornfeld D, Denkena B (2002) Advancing cutting technology. Ann CIRP 52(2):483–507 Byrne G, Dornfeld D, Denkena B (2002) Advancing cutting technology. Ann CIRP 52(2):483–507
2.
Zurück zum Zitat Corbett J, McKeown PA, Peggs GN, Whatmore R (2000) Nanotechnology: international developments and emerging products. Ann CIRP 49(2):523–545 Corbett J, McKeown PA, Peggs GN, Whatmore R (2000) Nanotechnology: international developments and emerging products. Ann CIRP 49(2):523–545
3.
Zurück zum Zitat Masuzawa T (2000) State of the art of micromachining. Ann CIRP 49(2):473–488 Masuzawa T (2000) State of the art of micromachining. Ann CIRP 49(2):473–488
4.
Zurück zum Zitat Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. Ann CIRP 52(2):635–657 Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. Ann CIRP 52(2):635–657
5.
Zurück zum Zitat Mamalis AG, Markopoulos A, Manolakos DE (2005) Micro and nanoprocessing techniques and applications. Nanotechnol Percept 1:31–52 Mamalis AG, Markopoulos A, Manolakos DE (2005) Micro and nanoprocessing techniques and applications. Nanotechnol Percept 1:31–52
6.
Zurück zum Zitat Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. Ann CIRP 55(2):745–768 Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. Ann CIRP 55(2):745–768
7.
Zurück zum Zitat Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC Press, Florida Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC Press, Florida
8.
Zurück zum Zitat Stephenson DA, Agapiou JS (2006) Metal cutting theory and practice, 2nd edn. CRC Press, FL, USA Stephenson DA, Agapiou JS (2006) Metal cutting theory and practice, 2nd edn. CRC Press, FL, USA
9.
Zurück zum Zitat Zorev NN (1966) Metal cutting mechanics. Pergamon Press, Oxford Zorev NN (1966) Metal cutting mechanics. Pergamon Press, Oxford
10.
Zurück zum Zitat Markopoulos AP (2012) Finite element method in machining processes. Springer, London, UK Markopoulos AP (2012) Finite element method in machining processes. Springer, London, UK
11.
Zurück zum Zitat Ernst H, Merchant ME (1941) Chip formation, friction and high quality machined surfaces. surface treatment of metals. Am Soc Metals 29:299–378 Ernst H, Merchant ME (1941) Chip formation, friction and high quality machined surfaces. surface treatment of metals. Am Soc Metals 29:299–378
12.
Zurück zum Zitat Merchant ME (1945) Mechanics of the metal cutting process II. Plasticity conditions in orthogonal cutting. J Appl Phys 16(6):318–324 Merchant ME (1945) Mechanics of the metal cutting process II. Plasticity conditions in orthogonal cutting. J Appl Phys 16(6):318–324
13.
Zurück zum Zitat Lee EH, Shaffer BW (1951) The theory of plasticity applied to a problem of machining. Trans ASME J Appl Mech 18:405–413 Lee EH, Shaffer BW (1951) The theory of plasticity applied to a problem of machining. Trans ASME J Appl Mech 18:405–413
14.
Zurück zum Zitat Kudo H (1965) Some new slip-line solutions for two-dimensional Steady-state machining. Int J Mech Sci 7:43–55 Kudo H (1965) Some new slip-line solutions for two-dimensional Steady-state machining. Int J Mech Sci 7:43–55
15.
Zurück zum Zitat Dewhurst P (1978) On the non-uniqueness of the machining process. Proc R Soc Lond A360:587–610 Dewhurst P (1978) On the non-uniqueness of the machining process. Proc R Soc Lond A360:587–610
16.
Zurück zum Zitat Oxley PLB (1989) The mechanics of machining: an analytical approach to assessing machinability. Ellis Horwood, Chichester, UK Oxley PLB (1989) The mechanics of machining: an analytical approach to assessing machinability. Ellis Horwood, Chichester, UK
17.
Zurück zum Zitat van Luttervelt CA, Childs THC, Jawahir IS, Klocke F and Venuvinod PK (1998) Present situation and future trends in modeling of machining operations. Progress report of the CIRP working group modeling and machining operations. Ann CIRP 47(2):587–626 van Luttervelt CA, Childs THC, Jawahir IS, Klocke F and Venuvinod PK (1998) Present situation and future trends in modeling of machining operations. Progress report of the CIRP working group modeling and machining operations. Ann CIRP 47(2):587–626
18.
Zurück zum Zitat Astakhov VP (2005) On the inadequacy of the single-shear plane model of chip formation. Int J Mech Sci 47:1649–1672MATH Astakhov VP (2005) On the inadequacy of the single-shear plane model of chip formation. Int J Mech Sci 47:1649–1672MATH
19.
Zurück zum Zitat Shaw MC, Cook NH, Smith PA (1952) The mechanics of three-dimensional cutting operations. Trans ASME 74:1055–1064 Shaw MC, Cook NH, Smith PA (1952) The mechanics of three-dimensional cutting operations. Trans ASME 74:1055–1064
20.
Zurück zum Zitat Morcos WA (1980) A slip line field solution of the free continuous cutting problem in conditions of light friction at chip-tool interface. Trans ASME J Eng Ind 102:310–314 Morcos WA (1980) A slip line field solution of the free continuous cutting problem in conditions of light friction at chip-tool interface. Trans ASME J Eng Ind 102:310–314
21.
Zurück zum Zitat Usui E, Hirota A, Masuko M (1978) Analytical prediction of three dimensional cutting process. Part 1. Basic cutting model and energy approach. Trans ASME J Eng Ind 100:222–228 Usui E, Hirota A, Masuko M (1978) Analytical prediction of three dimensional cutting process. Part 1. Basic cutting model and energy approach. Trans ASME J Eng Ind 100:222–228
22.
Zurück zum Zitat Usui E, Hirota A (1978) Analytical prediction of three dimensional cutting process. Part 2. Chip formation and cutting force with conventional single-point tool. Trans ASME J Eng Ind 100:229–235 Usui E, Hirota A (1978) Analytical prediction of three dimensional cutting process. Part 2. Chip formation and cutting force with conventional single-point tool. Trans ASME J Eng Ind 100:229–235
23.
Zurück zum Zitat Usui E, Shirakashi T, Kitagawa T (1978) Analytical prediction of three dimensional cutting process. Part 3. Cutting temperature and crater wear of carbide tool. Trans ASME J Eng Ind 100:236–243 Usui E, Shirakashi T, Kitagawa T (1978) Analytical prediction of three dimensional cutting process. Part 3. Cutting temperature and crater wear of carbide tool. Trans ASME J Eng Ind 100:236–243
24.
Zurück zum Zitat Malekian M, Mostofa MG, Park SS, Jun MBG (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Technol 212:553–559 Malekian M, Mostofa MG, Park SS, Jun MBG (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Technol 212:553–559
25.
Zurück zum Zitat Finnie I (1963) A comparison of stress strain behavior in cutting with that in other materials tests. In: Shaw M (ed) International research in production engineering: proceedings of the international production engineering research conference, Carnegie Institute of Technology, Pittsburgh, Pennsylvania, ASME:76–82 Finnie I (1963) A comparison of stress strain behavior in cutting with that in other materials tests. In: Shaw M (ed) International research in production engineering: proceedings of the international production engineering research conference, Carnegie Institute of Technology, Pittsburgh, Pennsylvania, ASME:76–82
26.
Zurück zum Zitat Ikawa N, Shimada S, Tanaka H, Ohmori G (1991) Atomistic analysis of nanometric chip removal as affected by tool-work interaction in diamond turning. Ann CIRP 40(1):551–554 Ikawa N, Shimada S, Tanaka H, Ohmori G (1991) Atomistic analysis of nanometric chip removal as affected by tool-work interaction in diamond turning. Ann CIRP 40(1):551–554
27.
Zurück zum Zitat Weule H, Huntrup V, Tritschle H (2001) Micro-cutting of steel to meet new requirements in miniaturization. Ann CIRP 50(1):61–64 Weule H, Huntrup V, Tritschle H (2001) Micro-cutting of steel to meet new requirements in miniaturization. Ann CIRP 50(1):61–64
28.
Zurück zum Zitat Kim CJ, Bono M, Ni J (2002) Experimental analysis of chip formation in micro-milling. Trans NAMRI/SME 30:1–8 Kim CJ, Bono M, Ni J (2002) Experimental analysis of chip formation in micro-milling. Trans NAMRI/SME 30:1–8
29.
Zurück zum Zitat Albrecht P (1960) New developments in the theory of metal cutting processes: Part I-the ploughing process in metal cutting. ASME J Eng Ind 82:348–357 Albrecht P (1960) New developments in the theory of metal cutting processes: Part I-the ploughing process in metal cutting. ASME J Eng Ind 82:348–357
30.
Zurück zum Zitat Albrecht P (1961) New developments in the theory of metal cutting processes: part II-the theory of chip formation. ASME J Eng Ind 83:557–568 Albrecht P (1961) New developments in the theory of metal cutting processes: part II-the theory of chip formation. ASME J Eng Ind 83:557–568
31.
Zurück zum Zitat Masuko M (1956) Fundamental research on the metal cutting: second report. Bull Jpn Soc Mech Eng 22:371–377 Masuko M (1956) Fundamental research on the metal cutting: second report. Bull Jpn Soc Mech Eng 22:371–377
32.
Zurück zum Zitat Backer WR, Marshall ER, Shaw MC (1952) The size effect in metal cutting. J Manuf Sci Eng Trans ASME 74:61–72 Backer WR, Marshall ER, Shaw MC (1952) The size effect in metal cutting. J Manuf Sci Eng Trans ASME 74:61–72
33.
Zurück zum Zitat Taniguchi N (1994) The state of the art of nanotechnology for processing of ultraprecision and ultrafine products. Precis Eng 16:5–24 Taniguchi N (1994) The state of the art of nanotechnology for processing of ultraprecision and ultrafine products. Precis Eng 16:5–24
34.
Zurück zum Zitat Kim JD, Kim DS (1995) Theoretical analysis of micro-cutting characteristics in ultra-precision machining. J Mater Process Technol 49:387–398 Kim JD, Kim DS (1995) Theoretical analysis of micro-cutting characteristics in ultra-precision machining. J Mater Process Technol 49:387–398
35.
Zurück zum Zitat Larsen-Basse J, Oxley PLB (1973) Effect of strain rate sensitivity on scale phenomena in chip formation. In: Proceedings of the 13th international machine tool design and research conference, University of Birmingham, pp 209–216 Larsen-Basse J, Oxley PLB (1973) Effect of strain rate sensitivity on scale phenomena in chip formation. In: Proceedings of the 13th international machine tool design and research conference, University of Birmingham, pp 209–216
36.
Zurück zum Zitat Kopalinsky EM, Oxley PLB (1984) Size effects in metal removal processes. Inst Phys Conf Ser 70:389–396 Kopalinsky EM, Oxley PLB (1984) Size effects in metal removal processes. Inst Phys Conf Ser 70:389–396
37.
Zurück zum Zitat Atkins AG (2003) Modeling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int J Mech Sci 45:373–396 Atkins AG (2003) Modeling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int J Mech Sci 45:373–396
38.
Zurück zum Zitat Dinesh D, Swaminathan S, Chandrasekar S, Farris TN (2001) An intrinsic size-effect in machining due to the strain gradient. In: Proceedings of the 2001 ASME IMECE, NY, 11–16 Nov, pp 197–204 Dinesh D, Swaminathan S, Chandrasekar S, Farris TN (2001) An intrinsic size-effect in machining due to the strain gradient. In: Proceedings of the 2001 ASME IMECE, NY, 11–16 Nov, pp 197–204
39.
Zurück zum Zitat Shaw MC, Jackson MJ (2006) The size effect in micromachining. In: Jackson MJ (ed) Microfabrication and nanomanufacturing. CRC Press, Boca Raton, FL, USA Shaw MC, Jackson MJ (2006) The size effect in micromachining. In: Jackson MJ (ed) Microfabrication and nanomanufacturing. CRC Press, Boca Raton, FL, USA
40.
Zurück zum Zitat Joshi SS, Melkote SN (2004) An explanation for the size-effect in machining based on strain gradient plasticity. J Manuf Sci Eng Trans ASME 126:679–684 Joshi SS, Melkote SN (2004) An explanation for the size-effect in machining based on strain gradient plasticity. J Manuf Sci Eng Trans ASME 126:679–684
41.
Zurück zum Zitat Liu K, Melkote SN (2007) Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. Int J Mech Sci 49:650–660 Liu K, Melkote SN (2007) Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. Int J Mech Sci 49:650–660
42.
Zurück zum Zitat Shaw MC (2003) The size effect in metal cutting. Sadhana Acad Proc Eng Sci 28(5):875–896 Shaw MC (2003) The size effect in metal cutting. Sadhana Acad Proc Eng Sci 28(5):875–896
43.
Zurück zum Zitat Liu X, DeVor RE, Kapoor SG, Ehmann KF (2004) The mechanics of machining at the microscale: assessment of the current state of the science. J Manuf Sci Eng Trans ASME 126:666–678 Liu X, DeVor RE, Kapoor SG, Ehmann KF (2004) The mechanics of machining at the microscale: assessment of the current state of the science. J Manuf Sci Eng Trans ASME 126:666–678
44.
Zurück zum Zitat Dixit PM, Dixit US (2008) Modeling of metal forming and machining processes by finite element and soft computing methods. Springer-Verlag London Limited, UK Dixit PM, Dixit US (2008) Modeling of metal forming and machining processes by finite element and soft computing methods. Springer-Verlag London Limited, UK
45.
Zurück zum Zitat Klocke F, Beck T, Hoppe S, Krieg T, Müller N, Nöthe T, Raedt HW, Sweeney K (2002) Examples of FEM application in manufacturing technology. J Mater Process Technol 120:450–457 Klocke F, Beck T, Hoppe S, Krieg T, Müller N, Nöthe T, Raedt HW, Sweeney K (2002) Examples of FEM application in manufacturing technology. J Mater Process Technol 120:450–457
46.
Zurück zum Zitat Mamalis AG, Manolakos DE, Ioannidis MB, Markopoulos A, Vottea IN (2003) Simulation of advanced manufacturing of solids and porous materials. Int J Manuf Sci Prod 5(3):111–130 Mamalis AG, Manolakos DE, Ioannidis MB, Markopoulos A, Vottea IN (2003) Simulation of advanced manufacturing of solids and porous materials. Int J Manuf Sci Prod 5(3):111–130
47.
Zurück zum Zitat Huang JM, Black JT (1996) An evaluation of chip separation criteria for the FEM simulation of machining. J Manuf Sci Eng 118:545–554 Huang JM, Black JT (1996) An evaluation of chip separation criteria for the FEM simulation of machining. J Manuf Sci Eng 118:545–554
48.
Zurück zum Zitat Owen DRJ, Vaz M Jr (1999) Computational techniques applied to high-speed machining under adiabatic strain localization conditions. Comput Methods Appl Mech Eng 171:445–461MATH Owen DRJ, Vaz M Jr (1999) Computational techniques applied to high-speed machining under adiabatic strain localization conditions. Comput Methods Appl Mech Eng 171:445–461MATH
49.
Zurück zum Zitat Lindgren LE, Edberg J (1990) Explicit versus implicit finite element formulation in simulation of rolling. J Mater Process Technol 24:85–94 Lindgren LE, Edberg J (1990) Explicit versus implicit finite element formulation in simulation of rolling. J Mater Process Technol 24:85–94
50.
Zurück zum Zitat Sun JS, Lee KH, Lee HP (2000) Comparison of implicit and explicit finite element methods for dynamic problems. J Mater Process Technol 105:110–118 Sun JS, Lee KH, Lee HP (2000) Comparison of implicit and explicit finite element methods for dynamic problems. J Mater Process Technol 105:110–118
51.
Zurück zum Zitat Harewood FJ, McHugh PE (2007) Comparison of the implicit and explicit finite element methods using crystal plasticity. Comput Mater Sci 39:481–494 Harewood FJ, McHugh PE (2007) Comparison of the implicit and explicit finite element methods using crystal plasticity. Comput Mater Sci 39:481–494
52.
Zurück zum Zitat Shih AJ (1996) Finite element analysis of rake angle effects in orthogonal metal cutting. Int J Mech Sci 38:1–17MATH Shih AJ (1996) Finite element analysis of rake angle effects in orthogonal metal cutting. Int J Mech Sci 38:1–17MATH
53.
Zurück zum Zitat Marusich TD, Ortiz M (1995) Modelling and simulation of high-speed machining. Int J Numer Meth Eng 38:3675–3694MATH Marusich TD, Ortiz M (1995) Modelling and simulation of high-speed machining. Int J Numer Meth Eng 38:3675–3694MATH
54.
Zurück zum Zitat Astakhov VP, Outeiro JC (2008) Metal cutting mechanics, finite element modelling. In: Davim JP (ed) Machining: fundamentals and recent advances. Springer-Verlag Limited, UK Astakhov VP, Outeiro JC (2008) Metal cutting mechanics, finite element modelling. In: Davim JP (ed) Machining: fundamentals and recent advances. Springer-Verlag Limited, UK
55.
Zurück zum Zitat Bäker M, Rösler J, Siemers C (2002) A Finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80:495–513 Bäker M, Rösler J, Siemers C (2002) A Finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80:495–513
56.
Zurück zum Zitat Özel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tools Manuf 46:518–530 Özel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tools Manuf 46:518–530
57.
Zurück zum Zitat Maranhão C, Davim JP (2010) Finite element modelling of machining of AISI 316 steel: numerical simulation and experimental validation. Simul Model Pract Theory 18:139–156 Maranhão C, Davim JP (2010) Finite element modelling of machining of AISI 316 steel: numerical simulation and experimental validation. Simul Model Pract Theory 18:139–156
58.
Zurück zum Zitat Özel T, Thepsonthi T, Ulutan D, Kaftanoğlu B (2011) Experiments and finite element simulations on micro-milling of Ti–6Al–4 V alloy with uncoated and cBN coated micro-tools. CIRP Ann Manuf Technol 60:85–88 Özel T, Thepsonthi T, Ulutan D, Kaftanoğlu B (2011) Experiments and finite element simulations on micro-milling of Ti–6Al–4 V alloy with uncoated and cBN coated micro-tools. CIRP Ann Manuf Technol 60:85–88
59.
Zurück zum Zitat Movahhedy MR, Altintas Y, Gadala MS (2002) Numerical analysis of metal cutting with chamfered and blunt tools. Tran ASMEJ Manuf Sci Eng 124:178–188 Movahhedy MR, Altintas Y, Gadala MS (2002) Numerical analysis of metal cutting with chamfered and blunt tools. Tran ASMEJ Manuf Sci Eng 124:178–188
60.
Zurück zum Zitat Arrazola PJ, Özel T (2008) Numerical modelling of 3-D hard turning using arbitrary eulerian lagrangian finite element method. Int J Mach Mach Mater 3:238–249 Arrazola PJ, Özel T (2008) Numerical modelling of 3-D hard turning using arbitrary eulerian lagrangian finite element method. Int J Mach Mach Mater 3:238–249
61.
Zurück zum Zitat Woon KS, Rahman M, Fang FZ, Neo KS, Liu K (2008) Investigations of tool edge radius effect in micromachining: a FEM simulation approach. J Mater Process Technol 195:204–211 Woon KS, Rahman M, Fang FZ, Neo KS, Liu K (2008) Investigations of tool edge radius effect in micromachining: a FEM simulation approach. J Mater Process Technol 195:204–211
62.
Zurück zum Zitat Weber M, Hochrainer T, Gumbsch P, Autenrieth H, Delonnoy L, Schulze V, Löhe D, Kotschenreuther J, Fleischer J (2007) Investigation of size-effects in machining with geometrically defined cutting edges. Mach Sci Technol 11:447–473 Weber M, Hochrainer T, Gumbsch P, Autenrieth H, Delonnoy L, Schulze V, Löhe D, Kotschenreuther J, Fleischer J (2007) Investigation of size-effects in machining with geometrically defined cutting edges. Mach Sci Technol 11:447–473
63.
Zurück zum Zitat Woon KS, Rahman M, Neo KS, Liu K (2008) The effect of tool edge radius on the contact phenomenon of tool-based micromachining. Int J Mach Tools Manuf 48:1395–1407 Woon KS, Rahman M, Neo KS, Liu K (2008) The effect of tool edge radius on the contact phenomenon of tool-based micromachining. Int J Mach Tools Manuf 48:1395–1407
64.
Zurück zum Zitat Barge M, Hamdi H, Rech J, Bergheau J-M (2005) Numerical modelling of orthogonal cutting: influence of numerical parameters. J Mater Process Technol 164–165:1148–1153 Barge M, Hamdi H, Rech J, Bergheau J-M (2005) Numerical modelling of orthogonal cutting: influence of numerical parameters. J Mater Process Technol 164–165:1148–1153
65.
Zurück zum Zitat Vaz M Jr, Owen DRJ, Kalhori V, Lundblad M, Lindgren L-E (2007) Modelling and simulation of machining processes. Arch Comput Methods Eng 14:173–204MATH Vaz M Jr, Owen DRJ, Kalhori V, Lundblad M, Lindgren L-E (2007) Modelling and simulation of machining processes. Arch Comput Methods Eng 14:173–204MATH
66.
Zurück zum Zitat Moriwaki T, Sugimura N, Luan S (1993) Combined stress, material flow and heat analysis of orthogonal micromachining of copper. Ann CIRP 42(1):75–78 Moriwaki T, Sugimura N, Luan S (1993) Combined stress, material flow and heat analysis of orthogonal micromachining of copper. Ann CIRP 42(1):75–78
67.
Zurück zum Zitat Vaz M Jr, Owen DRJ (2001) Aspects of ductile fracture and adaptive mesh refinement in damaged elasto-plastic materials. Inter J Numer Meth Eng 50:29–54MATH Vaz M Jr, Owen DRJ (2001) Aspects of ductile fracture and adaptive mesh refinement in damaged elasto-plastic materials. Inter J Numer Meth Eng 50:29–54MATH
68.
Zurück zum Zitat Wen Q, Guo YB, Todd BA (2006) An adaptive FEA method to predict surface quality in hard machining. J Mater Process Technol 173:21–28 Wen Q, Guo YB, Todd BA (2006) An adaptive FEA method to predict surface quality in hard machining. J Mater Process Technol 173:21–28
69.
Zurück zum Zitat Atkins AG (2006) Toughness and oblique cutting. Trans ASME J Manuf Sci Eng 128(3):775–786 Atkins AG (2006) Toughness and oblique cutting. Trans ASME J Manuf Sci Eng 128(3):775–786
70.
Zurück zum Zitat Rosa PAR, Martins PAF, Atkins AG (2007) Revisiting the fundamentals of metal cutting by means of finite elements and ductile fracture mechanics. Int J Mach Tools Manuf 47:607–617 Rosa PAR, Martins PAF, Atkins AG (2007) Revisiting the fundamentals of metal cutting by means of finite elements and ductile fracture mechanics. Int J Mach Tools Manuf 47:607–617
71.
Zurück zum Zitat Ng EG, Aspinwall DK (2002) Modeling of hard part machining. J Mater Process Technol 127:222–229 Ng EG, Aspinwall DK (2002) Modeling of hard part machining. J Mater Process Technol 127:222–229
72.
Zurück zum Zitat Usui E, Shirakashi T (1982) Mechanics of Machining—from “Descriptive” to “Predictive” Theory”. In: Kops L, Ramalingam S (eds) On the art of cutting metals—75 years later: a tribute to F.W. Taylor, proceedings of the winter annual meeting of the ASME PED, vol 7. pp 13–35 Usui E, Shirakashi T (1982) Mechanics of Machining—from “Descriptive” to “Predictive” Theory”. In: Kops L, Ramalingam S (eds) On the art of cutting metals—75 years later: a tribute to F.W. Taylor, proceedings of the winter annual meeting of the ASME PED, vol 7. pp 13–35
73.
Zurück zum Zitat Lin ZC, Lin SY (1992) A Couple finite element model of thermo-elastic-plastic large deformation for orthogonal cutting. ASME J Eng Ind 114:218–226 Lin ZC, Lin SY (1992) A Couple finite element model of thermo-elastic-plastic large deformation for orthogonal cutting. ASME J Eng Ind 114:218–226
74.
Zurück zum Zitat Liu CR, Guo YB (2000) Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer. Int J Mech Sci 42:1069–1086MATH Liu CR, Guo YB (2000) Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer. Int J Mech Sci 42:1069–1086MATH
75.
Zurück zum Zitat Shet C, Deng X (2000) Finite element analysis of the orthogonal metal cutting process. J Mater Process Technol 105:95–109 Shet C, Deng X (2000) Finite element analysis of the orthogonal metal cutting process. J Mater Process Technol 105:95–109
76.
Zurück zum Zitat Markopoulos AP (2006) Ultrprecision material removal processes. Ph.D. Thesis, National Technical University of Athens, Greece Markopoulos AP (2006) Ultrprecision material removal processes. Ph.D. Thesis, National Technical University of Athens, Greece
77.
Zurück zum Zitat Kahlori V (2001) Modelling and simulation of mechanical cutting. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden Kahlori V (2001) Modelling and simulation of mechanical cutting. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden
78.
Zurück zum Zitat Jaspers SPFC, Dautzenberg JH (2002) Material behaviour in metal cutting: strains, strain rates and temperatures in chip formation. J Mater Process Technol 121:123–135 Jaspers SPFC, Dautzenberg JH (2002) Material behaviour in metal cutting: strains, strain rates and temperatures in chip formation. J Mater Process Technol 121:123–135
79.
Zurück zum Zitat Astakhov VP (2006) Tribology of metal cutting. Elsevier, London, UK Astakhov VP (2006) Tribology of metal cutting. Elsevier, London, UK
80.
Zurück zum Zitat Athavale SM, Strenkowski JS (1998) Finite element modeling of machining: from proof-of-concept to engineering applications. Mach Sci Technol 2(2):317–342 Athavale SM, Strenkowski JS (1998) Finite element modeling of machining: from proof-of-concept to engineering applications. Mach Sci Technol 2(2):317–342
81.
Zurück zum Zitat Usui E, Maekawa K, Shirakashi T (1981) Simulation analysis of built-up edge formation in machining low carbon steels. Bull Jpn Soc Precis Eng 15:237–242 Usui E, Maekawa K, Shirakashi T (1981) Simulation analysis of built-up edge formation in machining low carbon steels. Bull Jpn Soc Precis Eng 15:237–242
82.
Zurück zum Zitat Maekawa K, Shirakashi T, Usui E (1983) Flow stress of low carbon steel at high temperature and strain rate (Part 2). Bull Jpn Soci Precis Eng 17(3):167–172 Maekawa K, Shirakashi T, Usui E (1983) Flow stress of low carbon steel at high temperature and strain rate (Part 2). Bull Jpn Soci Precis Eng 17(3):167–172
83.
Zurück zum Zitat Childs THC, Otieno AMW, Maekawa K (1994) The influence of material flow properties on the machining of steels. Proceedings of the Third International Conference on the Behaviour of Materials in Machining, Warwick, pp 104–119 Childs THC, Otieno AMW, Maekawa K (1994) The influence of material flow properties on the machining of steels. Proceedings of the Third International Conference on the Behaviour of Materials in Machining, Warwick, pp 104–119
84.
Zurück zum Zitat Oxley PLB (1989) The mechanics of machining: an analytical approach to assessing machinability. Ellis Horwood, Chichester, UK Oxley PLB (1989) The mechanics of machining: an analytical approach to assessing machinability. Ellis Horwood, Chichester, UK
85.
Zurück zum Zitat Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international symposium on Ballistics, The Hague, The Netherlands, pp 541–547 Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international symposium on Ballistics, The Hague, The Netherlands, pp 541–547
86.
Zurück zum Zitat Jaspers SPFC, Dautzenberg JH (2002) Material behaviour in conditions similar to Metal cutting: flow stress in the primary shear zone. J Mater Process Technol 122:322–330 Jaspers SPFC, Dautzenberg JH (2002) Material behaviour in conditions similar to Metal cutting: flow stress in the primary shear zone. J Mater Process Technol 122:322–330
87.
Zurück zum Zitat Lee WS, Lin CF (1998) High-temperature deformation behavior of Ti6Al4 V alloy evaluated by high strain-rate compression tests. J Mater Process Technol 75:127–136 Lee WS, Lin CF (1998) High-temperature deformation behavior of Ti6Al4 V alloy evaluated by high strain-rate compression tests. J Mater Process Technol 75:127–136
88.
Zurück zum Zitat Özel T, Karpat Y (2007) Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms. Mater Manuf Processes 22:659–667 Özel T, Karpat Y (2007) Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms. Mater Manuf Processes 22:659–667
89.
Zurück zum Zitat Umbrello D, M’Saoubi R, Outeiro JC (2007) The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel. Int J Mach Tools Manuf 47:462–470 Umbrello D, M’Saoubi R, Outeiro JC (2007) The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel. Int J Mach Tools Manuf 47:462–470
90.
Zurück zum Zitat Liang R, Khan AS (1999) A critical review of experimental Results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast 15:963–980MATH Liang R, Khan AS (1999) A critical review of experimental Results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast 15:963–980MATH
91.
Zurück zum Zitat Shi J, Liu CR (2004) The influence of material models on finite element simulation of machining. Trans ASME J Manuf Sci Eng 126:849–857 Shi J, Liu CR (2004) The influence of material models on finite element simulation of machining. Trans ASME J Manuf Sci Eng 126:849–857
92.
Zurück zum Zitat Dixit US, Joshi SN, Davim JP (2011) Incorporating of material behavior modeling of metal forming and machining processes: a review. Mater Des 32:3655–3670 Dixit US, Joshi SN, Davim JP (2011) Incorporating of material behavior modeling of metal forming and machining processes: a review. Mater Des 32:3655–3670
93.
Zurück zum Zitat Zerilli FJ, Armstrong RW (1987) Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys 61:1816–1825 Zerilli FJ, Armstrong RW (1987) Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys 61:1816–1825
94.
Zurück zum Zitat Meyer HW Jr, Kleponis DS (2001) Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration. Int J Impact Eng 26:509–521 Meyer HW Jr, Kleponis DS (2001) Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration. Int J Impact Eng 26:509–521
95.
Zurück zum Zitat Chuzhoy L, DeVor RE, Kapoor SG (2003) Machining simulation of ductile Iron and its constituents, part 2: numerical simulation and experimental validation of machining. Trans ASME J Manuf Sci Eng 125:192–201 Chuzhoy L, DeVor RE, Kapoor SG (2003) Machining simulation of ductile Iron and its constituents, part 2: numerical simulation and experimental validation of machining. Trans ASME J Manuf Sci Eng 125:192–201
96.
Zurück zum Zitat Simoneau A, Ng E, Elbestawi MA (2006) Surface defects during microcutting. Int J Mach Tools Manuf 46:1378–1387 Simoneau A, Ng E, Elbestawi MA (2006) Surface defects during microcutting. Int J Mach Tools Manuf 46:1378–1387
97.
Zurück zum Zitat Simoneau A, Ng E, Elbestawi MA (2006) Chip formation during microscale cutting of a medium carbon steel. Int J Mach Tools Manuf 46:467–481 Simoneau A, Ng E, Elbestawi MA (2006) Chip formation during microscale cutting of a medium carbon steel. Int J Mach Tools Manuf 46:467–481
98.
Zurück zum Zitat Simoneau A, Ng E, Elbestawi MA (2007) Modeling the effects of microstructure in metal cutting. Int J Mach Tools Manuf 47:368–375 Simoneau A, Ng E, Elbestawi MA (2007) Modeling the effects of microstructure in metal cutting. Int J Mach Tools Manuf 47:368–375
99.
Zurück zum Zitat Simoneau A, Ng E, Elbestawi MA (2007) Grain size and orientation effects when microcutting AISI 1045 steel. Ann CIRP 56(1):57–60 Simoneau A, Ng E, Elbestawi MA (2007) Grain size and orientation effects when microcutting AISI 1045 steel. Ann CIRP 56(1):57–60
100.
Zurück zum Zitat Doman DA, Warketin A, Bauer R (2009) Finite element modelling approaches in grinding. Int J Mach Tools Manuf 49:109–116 Doman DA, Warketin A, Bauer R (2009) Finite element modelling approaches in grinding. Int J Mach Tools Manuf 49:109–116
101.
Zurück zum Zitat Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121 Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121
102.
Zurück zum Zitat Wang H, To S, Chan CY, Cheung CF, Lee WB (2010) Elastic strain induced shearbands in the microcutting process. Int J Mach Tools Manuf 50:9–18 Wang H, To S, Chan CY, Cheung CF, Lee WB (2010) Elastic strain induced shearbands in the microcutting process. Int J Mach Tools Manuf 50:9–18
103.
Zurück zum Zitat Wang H, To S, Chan CY, Cheung CF, Lee WB (2010) A study of regularly spaced shear bands and morphology of serrated chip formation in microcutting process. Scripta Mater 63:227–230 Wang H, To S, Chan CY, Cheung CF, Lee WB (2010) A study of regularly spaced shear bands and morphology of serrated chip formation in microcutting process. Scripta Mater 63:227–230
104.
Zurück zum Zitat Zorev NN (1963) Interrelationship between shear processes occurring along tool face and on shear plane in metal cutting. Proceedings of the International Research in Production Engineering Conference, ASME, New York, pp 42–49 Zorev NN (1963) Interrelationship between shear processes occurring along tool face and on shear plane in metal cutting. Proceedings of the International Research in Production Engineering Conference, ASME, New York, pp 42–49
105.
Zurück zum Zitat Childs THC, Maekawa K (1990) Computer-aided simulation and experimental studies of chip flow and tool wear in the turning of low alloy steels by cemented carbide tools. Wear 139:235–250 Childs THC, Maekawa K (1990) Computer-aided simulation and experimental studies of chip flow and tool wear in the turning of low alloy steels by cemented carbide tools. Wear 139:235–250
106.
Zurück zum Zitat Arrazola PJ, Özel T (2010) Investigations on the effects of friction modeling in finite element simulation of machining. Int J Mech Sci 52:31–42 Arrazola PJ, Özel T (2010) Investigations on the effects of friction modeling in finite element simulation of machining. Int J Mech Sci 52:31–42
107.
Zurück zum Zitat Filice L, Micari F, Rizzuti S, Umbrello D (2007) A critical analysis on the friction modelling in orthogonal machining. Int J Mach Tools Manuf 47:709–714 Filice L, Micari F, Rizzuti S, Umbrello D (2007) A critical analysis on the friction modelling in orthogonal machining. Int J Mach Tools Manuf 47:709–714
108.
Zurück zum Zitat Childs THC (2006) Friction modelling in metal cutting. Wear 260:310–318 Childs THC (2006) Friction modelling in metal cutting. Wear 260:310–318
109.
Zurück zum Zitat Iqbal SA, Mativenga PT, Sheikh MA (2008) Contact length prediction: mathematical models and effect of friction schemes on FEM simulation for conventional to HSM of AISI 1045 steel. Int J Mach Mach Mater 3(1/2):18–32 Iqbal SA, Mativenga PT, Sheikh MA (2008) Contact length prediction: mathematical models and effect of friction schemes on FEM simulation for conventional to HSM of AISI 1045 steel. Int J Mach Mach Mater 3(1/2):18–32
110.
Zurück zum Zitat Woon KS, Rahman M, Liu K (2010) Numerical and experimental study of contact behavior in the tool-based micromachining of steel. Inter J Precis Eng Manufact 11(3):453–459 Woon KS, Rahman M, Liu K (2010) Numerical and experimental study of contact behavior in the tool-based micromachining of steel. Inter J Precis Eng Manufact 11(3):453–459
111.
Zurück zum Zitat Markopoulos AP, Manolakos DE (2010) Finite element analysis of micromachining. J Manuf Technol Res 2(1–2):17–30 Markopoulos AP, Manolakos DE (2010) Finite element analysis of micromachining. J Manuf Technol Res 2(1–2):17–30
112.
Zurück zum Zitat Getu H, Spelt JK, Papini M (2011) Thermal analysis of cryogenically assisted abrasive jet micromachining of PDMS. Int J Mach Tools Manuf 51:721–730 Getu H, Spelt JK, Papini M (2011) Thermal analysis of cryogenically assisted abrasive jet micromachining of PDMS. Int J Mach Tools Manuf 51:721–730
113.
Zurück zum Zitat Gupta MC, Li B, Gadag S, Chou KC (2010) Laser micromachining for fatigue and fracture mechanics applications. Opt Lasers Eng 48:441–447 Gupta MC, Li B, Gadag S, Chou KC (2010) Laser micromachining for fatigue and fracture mechanics applications. Opt Lasers Eng 48:441–447
114.
Zurück zum Zitat Stowers IF, Belak JF, Lucca DA, Komanduri R, Moriwaki T, Okuda K, Ikawa N, Shimada S, Tanaka H, Dow TA, Drescher JD (1991) Molecular- dynamics simulation of the chip forming process in single crystal copper and comparison with experimental data. Proc ASPE Ann Meet 1991:100–104 Stowers IF, Belak JF, Lucca DA, Komanduri R, Moriwaki T, Okuda K, Ikawa N, Shimada S, Tanaka H, Dow TA, Drescher JD (1991) Molecular- dynamics simulation of the chip forming process in single crystal copper and comparison with experimental data. Proc ASPE Ann Meet 1991:100–104
115.
Zurück zum Zitat Ikawa N, Shimada S, Tanaka H, Ohmori G (1991) Atomistic analysis of nanometric chip removal as affected by tool-work interaction in diamond turning. Ann CIRP 40(1):551–554 Ikawa N, Shimada S, Tanaka H, Ohmori G (1991) Atomistic analysis of nanometric chip removal as affected by tool-work interaction in diamond turning. Ann CIRP 40(1):551–554
116.
Zurück zum Zitat Rentsch R, Inasaki I (1995) Investigation of surface integrity by molecular dynamics simulation. Ann CIRP 42(1):295–298 Rentsch R, Inasaki I (1995) Investigation of surface integrity by molecular dynamics simulation. Ann CIRP 42(1):295–298
117.
Zurück zum Zitat Komanduri R, Chandrasekaran N, Raff LM (2001) MD simulation of exit failure in nanometric cutting. Mater Sci Eng A 311:1–12 Komanduri R, Chandrasekaran N, Raff LM (2001) MD simulation of exit failure in nanometric cutting. Mater Sci Eng A 311:1–12
118.
Zurück zum Zitat McGeough J (ed) (2002) Micromachining of engineering materials. Marcel Dekker Inc., New York, USA McGeough J (ed) (2002) Micromachining of engineering materials. Marcel Dekker Inc., New York, USA
119.
Zurück zum Zitat Luo X, Cheng K, Guo X, Holt R (2003) An investigation on the mechanics of nanometric cutting and the development of its test-bed. Int J Prod Res 41(7):1449–1465 Luo X, Cheng K, Guo X, Holt R (2003) An investigation on the mechanics of nanometric cutting and the development of its test-bed. Int J Prod Res 41(7):1449–1465
120.
Zurück zum Zitat Rentsch R (2004) Molecular dynamics simulation of micromachining of pre-machined surfaces. In: Proceedings of 4th euspen international conference, Glascow, Scotland, pp 139–140 Rentsch R (2004) Molecular dynamics simulation of micromachining of pre-machined surfaces. In: Proceedings of 4th euspen international conference, Glascow, Scotland, pp 139–140
121.
Zurück zum Zitat Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tools Manuf 45:1681–1686 Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tools Manuf 45:1681–1686
122.
Zurück zum Zitat Pei QX, Lu C, Fang FZ, Wu H (2006) Nanometric cutting of copper: a molecular dynamics study. Comput Mater Sci 37:434–441 Pei QX, Lu C, Fang FZ, Wu H (2006) Nanometric cutting of copper: a molecular dynamics study. Comput Mater Sci 37:434–441
123.
Zurück zum Zitat Cai MB, Li XP, Rahman M (2007) Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation. J Mater Process Technol 192–193:607–612 Cai MB, Li XP, Rahman M (2007) Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation. J Mater Process Technol 192–193:607–612
124.
Zurück zum Zitat Narulkar R, Bukkapatnam S, Raff LM, Komanduri R (2009) Graphitization as a precursor to wear of diamond in machining pure iron: a molecular dynamics investigation. Comput Mater Sci 45:358–366 Narulkar R, Bukkapatnam S, Raff LM, Komanduri R (2009) Graphitization as a precursor to wear of diamond in machining pure iron: a molecular dynamics investigation. Comput Mater Sci 45:358–366
125.
Zurück zum Zitat Kim CJ, Mayor R, Ni J (2011) Molecular dynamics simulation of plastic material deformation in machining with a round cutting edge. Inter J Precis Eng Manuf 13(8):1303–1309 Kim CJ, Mayor R, Ni J (2011) Molecular dynamics simulation of plastic material deformation in machining with a round cutting edge. Inter J Precis Eng Manuf 13(8):1303–1309
126.
Zurück zum Zitat Shi J, Shi Y, Liu CR (2011) Evaluation of a three-dimensional single-point turning at atomistic level by a molecular dynamic simulation. Int J Adv Manuf Technol 54:161–171 Shi J, Shi Y, Liu CR (2011) Evaluation of a three-dimensional single-point turning at atomistic level by a molecular dynamic simulation. Int J Adv Manuf Technol 54:161–171
127.
Zurück zum Zitat Davim JP, Jackson MJ (eds) (2009) Nano and micromachining. ISTE Ltd, London, UK Davim JP, Jackson MJ (eds) (2009) Nano and micromachining. ISTE Ltd, London, UK
128.
Zurück zum Zitat Zhang JJ, Sun T, Yan YD, Liang YC, Dong S (2008) Molecular dynamics simulation of subsurface deformed layers in AFM-based nanometric cutting process. Appl Surf Sci 254:4774–4779 Zhang JJ, Sun T, Yan YD, Liang YC, Dong S (2008) Molecular dynamics simulation of subsurface deformed layers in AFM-based nanometric cutting process. Appl Surf Sci 254:4774–4779
129.
Zurück zum Zitat Komanduri R, Raff LM (2001) A Review on the molecular dynamics simulation of machining at the atomic scale. Proc Instit Mech Eng Part B J Eng Manuf 215:1639–1672 Komanduri R, Raff LM (2001) A Review on the molecular dynamics simulation of machining at the atomic scale. Proc Instit Mech Eng Part B J Eng Manuf 215:1639–1672
130.
Zurück zum Zitat Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister H-W, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. Ann CIRP 55(2):667–696 Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister H-W, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. Ann CIRP 55(2):667–696
131.
Zurück zum Zitat Yang X, Guo J, Chen X, Kunieda M (2011) Molecular dynamics simulation of the material removal mechanism in micro-EDM. Precis Eng 35:51–57 Yang X, Guo J, Chen X, Kunieda M (2011) Molecular dynamics simulation of the material removal mechanism in micro-EDM. Precis Eng 35:51–57
132.
Zurück zum Zitat Cheng J, Liu C-S, Shang S, Liu D, Perrie W, Dearden G, Watkins K (2013) A review of ultrafast laser materials micromachining. Opt Laser Technol 46:88–102 Cheng J, Liu C-S, Shang S, Liu D, Perrie W, Dearden G, Watkins K (2013) A review of ultrafast laser materials micromachining. Opt Laser Technol 46:88–102
133.
Zurück zum Zitat Ciurana J, Arias G, Ozel T (2009) Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Mater Manuf Process 24:358–368 Ciurana J, Arias G, Ozel T (2009) Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Mater Manuf Process 24:358–368
134.
Zurück zum Zitat Aly MF, Ng E-G, Veldhuis SC, Elbestawi MA (2006) Prediction of cutting forces in the micro-machining of silicon using a “hybrid molecular dynamic-finite element analysis” force model. Int J Mach Tools Manuf 46:1727–1739 Aly MF, Ng E-G, Veldhuis SC, Elbestawi MA (2006) Prediction of cutting forces in the micro-machining of silicon using a “hybrid molecular dynamic-finite element analysis” force model. Int J Mach Tools Manuf 46:1727–1739
135.
Zurück zum Zitat Lin Z-C, Huang J-C, Jeng Y-R (2007) 3D nano-scale cutting model for Nickel material. J Mater Process Technol 192–193:27–36 Lin Z-C, Huang J-C, Jeng Y-R (2007) 3D nano-scale cutting model for Nickel material. J Mater Process Technol 192–193:27–36
Metadaten
Titel
Modeling of Micromachining
verfasst von
Angelos P. Markopoulos
Dimitrios E. Manolakos
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-45176-8_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.