Skip to main content
Erschienen in: Optical and Quantum Electronics 7/2016

01.07.2016

Modeling of single mode optical fiber having a complicated refractive index profile by using modified scalar finite element method

verfasst von: Sanjeev Kumar Raghuwanshi, B. M. Azizur Rahman

Erschienen in: Optical and Quantum Electronics | Ausgabe 7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A numerical method based on modified scalar finite element method (SC-FEM) is presented and programmed on MATLAB platform for optical fiber modeling purpose. We have estimated the dispersion graph, mode cut off condition, and group delay and waveguide dispersion for highly complicated chirped type refractive index profile fiber. The convergence study of our FEM formulation is carried out with respect to the number of division in core. It has been found that the numerical error becomes less than 2 % when the number of divisions in the core is more then 30. To predict the accurate waveguide dispersion characteristics, we need to compute expression \(\frac{{{\text{d}}^{2} \left( {\text{vb}} \right)}}{{{\text{dv}}^{2} }}\) numerically by the FEM method. For that the normalized propagation constant b (in terms of \(\beta\)) should be an accurate enough up to around 6 decimal points. To achieve this target, we have used 1 million sampling points in our FEM simulations. Further to validate our results we have derived the higher order polynomial expression for each case. Comparison with other methods in calculation of normalized propagation constant is found to be satisfactory. In traditional FEM analysis a spurious solution is generated because the functional does not satisfy the boundary conditions in the original waveguide problem, However in our analysis a new term that compensate the missing boundary condition has been added in the functional to eliminate the spurious solutions. Our study will be useful for the analysis of optical fiber having varying refractive index profile.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Baqir, M.A., Choudhary, P.K.: Dispersion characteristics of optical fibers under PEMC twist. J. Electromagn. Wave Appl. 28(17), 2124–2134 (2014)CrossRef Baqir, M.A., Choudhary, P.K.: Dispersion characteristics of optical fibers under PEMC twist. J. Electromagn. Wave Appl. 28(17), 2124–2134 (2014)CrossRef
Zurück zum Zitat Booton, R.C.: Computational Methods for Electromagnetic and Microwave. Wiley, New York (1992) Booton, R.C.: Computational Methods for Electromagnetic and Microwave. Wiley, New York (1992)
Zurück zum Zitat Chaudhuri, P.R., Roy, S.: Analysis of arbitrary index profile planar optical waveguide and multilayer nonlinear structure: a simple finite differences algorithm. Opt. Quantum Electron. 39, 221–237 (2007)CrossRef Chaudhuri, P.R., Roy, S.: Analysis of arbitrary index profile planar optical waveguide and multilayer nonlinear structure: a simple finite differences algorithm. Opt. Quantum Electron. 39, 221–237 (2007)CrossRef
Zurück zum Zitat Chiang, K.S.: Review of numerical and approximation methods for modal analysis of general dielectric waveguide. Opt. Quantum Electron. 26, 113–134 (1994)CrossRef Chiang, K.S.: Review of numerical and approximation methods for modal analysis of general dielectric waveguide. Opt. Quantum Electron. 26, 113–134 (1994)CrossRef
Zurück zum Zitat Gambling, W.A., Payne, D.N., Matsumura, H.: Cut-off frequency in radically inhomogeneous single mode fiber. Electron. Lett. 13(5), 130–140 (1977)CrossRef Gambling, W.A., Payne, D.N., Matsumura, H.: Cut-off frequency in radically inhomogeneous single mode fiber. Electron. Lett. 13(5), 130–140 (1977)CrossRef
Zurück zum Zitat Ghatak, A.K., Thyagarajan, K.: Optical Electronics: Introduction to Fiber Optics. Cambridge Press, Cambridge (1999) Ghatak, A.K., Thyagarajan, K.: Optical Electronics: Introduction to Fiber Optics. Cambridge Press, Cambridge (1999)
Zurück zum Zitat He, X.Y., Wang, Q.J., Yu, S.F.: Numerical study of gain-assisted terahertz hybrid plasmonic waveguide. Plasmonics 7, 571–577 (2012)CrossRef He, X.Y., Wang, Q.J., Yu, S.F.: Numerical study of gain-assisted terahertz hybrid plasmonic waveguide. Plasmonics 7, 571–577 (2012)CrossRef
Zurück zum Zitat Honkis, T.H.: Analysis of optical waveguide with arbitrary index profile using an immersed interface method. Int. J. Mod. Phys. C 22(7), 687–710 (2011)ADSCrossRef Honkis, T.H.: Analysis of optical waveguide with arbitrary index profile using an immersed interface method. Int. J. Mod. Phys. C 22(7), 687–710 (2011)ADSCrossRef
Zurück zum Zitat Hotate, K.A., Okoshi, T.: Formula giving single-mode limit of optical fiber having arbitrary refractive index profile. Electron. Lett. 14(8), 246–248 (1978)ADSCrossRef Hotate, K.A., Okoshi, T.: Formula giving single-mode limit of optical fiber having arbitrary refractive index profile. Electron. Lett. 14(8), 246–248 (1978)ADSCrossRef
Zurück zum Zitat Kasim, N.M., Mohammad, A.B., Ibrahim, M.H.: Optical waveguide modeling based on scalar finite difference scheme. J. Teknol. 45(D), 181–194 (2006) Kasim, N.M., Mohammad, A.B., Ibrahim, M.H.: Optical waveguide modeling based on scalar finite difference scheme. J. Teknol. 45(D), 181–194 (2006)
Zurück zum Zitat Li, Z., Bao, K., Fang, Y., Huang, Y., Nordlander, P., Xu, H.: Correlation between incident and emission polarization in nanowire surface plasmons waveguide. Nano Lett. 10, 1831–1835 (2010)ADSCrossRef Li, Z., Bao, K., Fang, Y., Huang, Y., Nordlander, P., Xu, H.: Correlation between incident and emission polarization in nanowire surface plasmons waveguide. Nano Lett. 10, 1831–1835 (2010)ADSCrossRef
Zurück zum Zitat Mussina, R., Selviah, D.R., Fernnandez, F.A., Tijhuis, A.G., Hon, B.P.D.: A rapid accurate technique to calculate the group delay dispersion and dispersion slop of arbitrary radial refractive index profile weakly-guiding optical fibers. Prog. Electromagn. Res. 145, 99–113 (2014)CrossRef Mussina, R., Selviah, D.R., Fernnandez, F.A., Tijhuis, A.G., Hon, B.P.D.: A rapid accurate technique to calculate the group delay dispersion and dispersion slop of arbitrary radial refractive index profile weakly-guiding optical fibers. Prog. Electromagn. Res. 145, 99–113 (2014)CrossRef
Zurück zum Zitat Okamoto, K.: Fundamentals of Optical Waveguide. Academic, Cambridge (2006) Okamoto, K.: Fundamentals of Optical Waveguide. Academic, Cambridge (2006)
Zurück zum Zitat Okamoto, K., Okoshi, T.: Analysis of wave propagation in optical fibers having core with α-power refractive distribution and uniform cladding. IEEE Trans. Microw. Theory Tech. MTT-24(7), 416–421 (1976)ADSCrossRef Okamoto, K., Okoshi, T.: Analysis of wave propagation in optical fibers having core with α-power refractive distribution and uniform cladding. IEEE Trans. Microw. Theory Tech. MTT-24(7), 416–421 (1976)ADSCrossRef
Zurück zum Zitat Okoshi, T., Okamoto, K.: Analysis of wave propagation in inhomogeneous optical fibers using a varational method. IEEE Trans. Microw. Theory Tech. MTT-22(11), 938–945 (1974)ADSCrossRef Okoshi, T., Okamoto, K.: Analysis of wave propagation in inhomogeneous optical fibers using a varational method. IEEE Trans. Microw. Theory Tech. MTT-22(11), 938–945 (1974)ADSCrossRef
Zurück zum Zitat Politano, A., Chiarello, G.: Quenching of plasmons modes in air-exposed grapheme-Ru contacts for plasmonic devices. Appl. Phys. Lett. 102, 201608 (2013a)ADSCrossRef Politano, A., Chiarello, G.: Quenching of plasmons modes in air-exposed grapheme-Ru contacts for plasmonic devices. Appl. Phys. Lett. 102, 201608 (2013a)ADSCrossRef
Zurück zum Zitat Politano, A., Chiarello, G.: Unravelling suitable grapheme-metal contacts for grapheme-based plasmonic device. Nanoscale 5, 8220–8251 (2013b)ADSCrossRef Politano, A., Chiarello, G.: Unravelling suitable grapheme-metal contacts for grapheme-based plasmonic device. Nanoscale 5, 8220–8251 (2013b)ADSCrossRef
Zurück zum Zitat Popescu, V.A.: Determination of normalized propagation constant for optical waveguide by using second order variational method. J. Optoelectron. Adv. Mater. 7(5), 2783–2786 (2005) Popescu, V.A.: Determination of normalized propagation constant for optical waveguide by using second order variational method. J. Optoelectron. Adv. Mater. 7(5), 2783–2786 (2005)
Zurück zum Zitat Raghuwanshi, S.K., Kumar, S.: Analytical expression for dispersion properties of circular core dielectric waveguide without computing d 2 β/dk 2 numerically. I Manage J. Future Eng. Technol. 7(3), 26–34 (2012) Raghuwanshi, S.K., Kumar, S.: Analytical expression for dispersion properties of circular core dielectric waveguide without computing d 2 β/dk 2 numerically. I Manage J. Future Eng. Technol. 7(3), 26–34 (2012)
Zurück zum Zitat Raghuwanshi, S.K., Kumar, A.: A new semi-analytical method for the analysis of tapered optical waveguide. Optik (Elsevier) 125(24), 7221–7515 (2014) Raghuwanshi, S.K., Kumar, A.: A new semi-analytical method for the analysis of tapered optical waveguide. Optik (Elsevier) 125(24), 7221–7515 (2014)
Zurück zum Zitat Raghuwanshi, S.K., Rahman, B.M.A.: Analysis of novel chirped types of refractive index profile metamaterial planar slab optical waveguide by finite element method for sensor application. IEEE Sens. J. 15(7), 4141–4147 (2015a)CrossRef Raghuwanshi, S.K., Rahman, B.M.A.: Analysis of novel chirped types of refractive index profile metamaterial planar slab optical waveguide by finite element method for sensor application. IEEE Sens. J. 15(7), 4141–4147 (2015a)CrossRef
Zurück zum Zitat Raghuwanshi, S.K., Rahman, B.M.A.: Propagation and characterization of novel graded and linearly chirped type’s of refractive index profile symmetric planar slab waveguide by numerical means. Prog. Electromagn. Res. B (MIT-USA) 62, 255–275 (2015b)CrossRef Raghuwanshi, S.K., Rahman, B.M.A.: Propagation and characterization of novel graded and linearly chirped type’s of refractive index profile symmetric planar slab waveguide by numerical means. Prog. Electromagn. Res. B (MIT-USA) 62, 255–275 (2015b)CrossRef
Zurück zum Zitat Raghuwanshi, S.K., Talabattula, S.: Dispersion and peak reflectivity analysis in a non-uniform FBG based sensors due to arbitrary refractive index profile. Prog. Electromagn. Res. B 36, 249–265 (2012)CrossRef Raghuwanshi, S.K., Talabattula, S.: Dispersion and peak reflectivity analysis in a non-uniform FBG based sensors due to arbitrary refractive index profile. Prog. Electromagn. Res. B 36, 249–265 (2012)CrossRef
Zurück zum Zitat Raghuwanshi, S.K., Kumar, S., Kumar, A.: Dispersion characteristics of complex refractive-index planar slab optical waveguide by using finite element method. Optik (Elsevier) 125(20), 5929–5935 (2014)ADS Raghuwanshi, S.K., Kumar, S., Kumar, A.: Dispersion characteristics of complex refractive-index planar slab optical waveguide by using finite element method. Optik (Elsevier) 125(20), 5929–5935 (2014)ADS
Zurück zum Zitat Rahman, B.M.A.: Finite element analysis of optical waveguides. Prog. Electromagn. Res. 10, 187–216 (1995) Rahman, B.M.A.: Finite element analysis of optical waveguides. Prog. Electromagn. Res. 10, 187–216 (1995)
Zurück zum Zitat Rostami, A., Motavali, H.: Asymptotic iteration method: a power approach for analysis of inhomogeneous dielectric slab waveguide. Prog. Electromagn. Res. B 4, 171–182 (2008)CrossRef Rostami, A., Motavali, H.: Asymptotic iteration method: a power approach for analysis of inhomogeneous dielectric slab waveguide. Prog. Electromagn. Res. B 4, 171–182 (2008)CrossRef
Zurück zum Zitat Rostami, A., Moyaedi, S.K.: Exact solution for the TM mode in inhomogeneous slab waveguides. Laser Phys. 14(12), 1492–1498 (2004) Rostami, A., Moyaedi, S.K.: Exact solution for the TM mode in inhomogeneous slab waveguides. Laser Phys. 14(12), 1492–1498 (2004)
Zurück zum Zitat Sadiku, M.N.O.: Numerical Techniques in Electromagnetic, 2nd edn. CRC Press LLC, Boca Raton (1992)MATH Sadiku, M.N.O.: Numerical Techniques in Electromagnetic, 2nd edn. CRC Press LLC, Boca Raton (1992)MATH
Zurück zum Zitat Sharma, E.K., Goyal, I.C., Ghatak, A.K.: Calculation of cut-off frequencies in optical fibers for arbitrary profiles using the matrix method. IEEE J. Quantum Electron. QE-17(12), 2317–2320 (1981)ADSCrossRef Sharma, E.K., Goyal, I.C., Ghatak, A.K.: Calculation of cut-off frequencies in optical fibers for arbitrary profiles using the matrix method. IEEE J. Quantum Electron. QE-17(12), 2317–2320 (1981)ADSCrossRef
Zurück zum Zitat Survaiya, S.P., Shevagaonkar, R.K.: Dispersion characteristics of an optical fiber having linear chirp refractive index profile. IEEE J. Lightwave Tech. 17(10), 1797–1805 (1999)ADSCrossRef Survaiya, S.P., Shevagaonkar, R.K.: Dispersion characteristics of an optical fiber having linear chirp refractive index profile. IEEE J. Lightwave Tech. 17(10), 1797–1805 (1999)ADSCrossRef
Zurück zum Zitat Walpita, L.M.: Solution for planar optical waveguide equation by selecting zero elements in a characteristics matrix. J. Opt. Soc. Am. A2, 592–602 (1985)ADS Walpita, L.M.: Solution for planar optical waveguide equation by selecting zero elements in a characteristics matrix. J. Opt. Soc. Am. A2, 592–602 (1985)ADS
Zurück zum Zitat Xu, W., Wang, Z.H., Huang, Z.M.: Propagation constant of a planar dielectric waveguide with arbitrary refractive index variation. Opt. Lett. 18, 805–807 (1993)ADSCrossRef Xu, W., Wang, Z.H., Huang, Z.M.: Propagation constant of a planar dielectric waveguide with arbitrary refractive index variation. Opt. Lett. 18, 805–807 (1993)ADSCrossRef
Zurück zum Zitat Zheludev, N.I.: Photonic-plasmonic devices: a 7-nm light pen makes its mark. Nat. Nanotechnol. 5, 10–11 (2010)ADSCrossRef Zheludev, N.I.: Photonic-plasmonic devices: a 7-nm light pen makes its mark. Nat. Nanotechnol. 5, 10–11 (2010)ADSCrossRef
Zurück zum Zitat Zhuangqi, C., Jiang, Y., Yingli, C.: Analytical investigation of planar optical waveguide with arbitrary index profiles. Opt. Quantum Electron. 31, 637–644 (1999)CrossRef Zhuangqi, C., Jiang, Y., Yingli, C.: Analytical investigation of planar optical waveguide with arbitrary index profiles. Opt. Quantum Electron. 31, 637–644 (1999)CrossRef
Metadaten
Titel
Modeling of single mode optical fiber having a complicated refractive index profile by using modified scalar finite element method
verfasst von
Sanjeev Kumar Raghuwanshi
B. M. Azizur Rahman
Publikationsdatum
01.07.2016
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 7/2016
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-016-0632-9

Weitere Artikel der Ausgabe 7/2016

Optical and Quantum Electronics 7/2016 Zur Ausgabe

Neuer Inhalt