Skip to main content

2022 | OriginalPaper | Buchkapitel

2. Modeling of the Machining Process

verfasst von : Kunpeng Zhu

Erschienen in: Smart Machining Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The primary goal of machining process modeling is to improve machining performance prediction. The most studied predictive methods are analytical, numerical, and artificial intelligence (AI) modeling, which are commonly validated with experimental data (Altintas in Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, Cambridge, 2012; Grzesik in Advanced machining processes of metallic materials: theory, modelling and applications, Elsevier, 2017). There are also many studies attempt to develop hybrid modeling techniques to integrate the benefits of the different approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design, 2nd edn. Cambridge University Press, CambridgeCrossRef Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design, 2nd edn. Cambridge University Press, CambridgeCrossRef
2.
Zurück zum Zitat Grzesik W (2017) Advanced machining processes of metallic materials: theory, modelling and applications, 2nd edn. Elsevier Grzesik W (2017) Advanced machining processes of metallic materials: theory, modelling and applications, 2nd edn. Elsevier
3.
Zurück zum Zitat Assessment of machining models: progress report. Mach Sci Technol 4(3) Assessment of machining models: progress report. Mach Sci Technol 4(3)
4.
Zurück zum Zitat Arrazola PJ, Özel T, Umbrello D, Davies M, Jawahir IS (2013) Recent advances in modelling of metal machining processes. CIRP Ann 62(2):695–718CrossRef Arrazola PJ, Özel T, Umbrello D, Davies M, Jawahir IS (2013) Recent advances in modelling of metal machining processes. CIRP Ann 62(2):695–718CrossRef
5.
Zurück zum Zitat Byrne G, Dornfeld D, Denkena B (2003) Advancing cutting technology. Ann CIRP 52(2):483–507CrossRef Byrne G, Dornfeld D, Denkena B (2003) Advancing cutting technology. Ann CIRP 52(2):483–507CrossRef
6.
Zurück zum Zitat Landers RG, Barton K, Devasia S, Kurfess T et al (2020) A review of manufacturing process control. J Manuf Sci Eng 142(11):110814 Landers RG, Barton K, Devasia S, Kurfess T et al (2020) A review of manufacturing process control. J Manuf Sci Eng 142(11):110814
7.
Zurück zum Zitat Childs T, Maekawa K, Obikawa T, Yamane Y (2000) Metal machining theory and applications. Wiley Childs T, Maekawa K, Obikawa T, Yamane Y (2000) Metal machining theory and applications. Wiley
8.
Zurück zum Zitat Arinez JF, Chang Q, Gao RX et al (2020) Artificial intelligence in advanced manufacturing: current status and future outlook. J Manuf Sci Eng 142(11):110804 Arinez JF, Chang Q, Gao RX et al (2020) Artificial intelligence in advanced manufacturing: current status and future outlook. J Manuf Sci Eng 142(11):110804
9.
Zurück zum Zitat Sagapuram D, Udupa A, Viswanathan K et al (2020) On the cutting of metals: a mechanics viewpoint. J Manuf Sci Eng 142(11):110808 Sagapuram D, Udupa A, Viswanathan K et al (2020) On the cutting of metals: a mechanics viewpoint. J Manuf Sci Eng 142(11):110808
10.
Zurück zum Zitat Shaw MC, Cookson JO (2005) Metal cutting principles, 2nd edn. Clarendon Press. Shaw MC, Cookson JO (2005) Metal cutting principles, 2nd edn. Clarendon Press.
11.
Zurück zum Zitat Boothroyd G, Knight WA (2006) Fundamentals of machining and machine tools, 3rd edn. CRC Press, Boca Raton Boothroyd G, Knight WA (2006) Fundamentals of machining and machine tools, 3rd edn. CRC Press, Boca Raton
12.
Zurück zum Zitat Grote A (eds) (2008) Springer handbook of mechanical engineering Grote A (eds) (2008) Springer handbook of mechanical engineering
13.
Zurück zum Zitat Ren H, Altintas Y (2000) Mechanics of machining with chamfered tools. ASME J Manuf Sci 122:650–659CrossRef Ren H, Altintas Y (2000) Mechanics of machining with chamfered tools. ASME J Manuf Sci 122:650–659CrossRef
14.
Zurück zum Zitat Jin X, Altintas Y (2011) Slip-line field model of micro-cutting process with round tool edge effect. J Mater Process Technol 211:339–355CrossRef Jin X, Altintas Y (2011) Slip-line field model of micro-cutting process with round tool edge effect. J Mater Process Technol 211:339–355CrossRef
15.
Zurück zum Zitat Merchant ME (1945) Mechanics of the metal cutting process, part I: orthogonal cutting and a type 2 chip. J Appl Phys 16(5):267–275CrossRef Merchant ME (1945) Mechanics of the metal cutting process, part I: orthogonal cutting and a type 2 chip. J Appl Phys 16(5):267–275CrossRef
16.
Zurück zum Zitat Lee H, Shaffer BW (1951) The theory of plasticity applied to a problem of machining. Trans ASME J Appl Mech 73:405–413CrossRef Lee H, Shaffer BW (1951) The theory of plasticity applied to a problem of machining. Trans ASME J Appl Mech 73:405–413CrossRef
17.
Zurück zum Zitat Loewen EG, Shaw MC (1954) On the analysis of cutting-tool temperatures. Trans ASME 76:217 Loewen EG, Shaw MC (1954) On the analysis of cutting-tool temperatures. Trans ASME 76:217
18.
Zurück zum Zitat Palmer WB, Oxley PLB (1959) Mechanics of orthogonal machining. Proc Inst Mech Eng 1–196(173):623–654CrossRef Palmer WB, Oxley PLB (1959) Mechanics of orthogonal machining. Proc Inst Mech Eng 1–196(173):623–654CrossRef
19.
Zurück zum Zitat Wang X, Jawahir IS (2007) Recent advances in plasticity applications in metal machining: slip-line models for machining with rounded cutting edge restricted contact grooved tools. Int J Mach Mach Mater 2:347–360 Wang X, Jawahir IS (2007) Recent advances in plasticity applications in metal machining: slip-line models for machining with rounded cutting edge restricted contact grooved tools. Int J Mach Mach Mater 2:347–360
20.
Zurück zum Zitat Atlati S, Haddag B, Nouari M, Moufki A (2015) Effect of the local friction and contact nature on the built-up edge formation process in machining ductile metals. Tribol Int 90:217–227CrossRef Atlati S, Haddag B, Nouari M, Moufki A (2015) Effect of the local friction and contact nature on the built-up edge formation process in machining ductile metals. Tribol Int 90:217–227CrossRef
21.
Zurück zum Zitat Yaguchi H, Onodera N (1988) The effect of tellurium on the machinability of AISI 12L14+ Te steel. Trans Iron Steel Inst Jpn 28(12):1051–1059CrossRef Yaguchi H, Onodera N (1988) The effect of tellurium on the machinability of AISI 12L14+ Te steel. Trans Iron Steel Inst Jpn 28(12):1051–1059CrossRef
22.
Zurück zum Zitat Fang N, Dewhurst P (2005) Slip-line modeling of built-up edge formation in machining. Int J Mech Sci 47(7):1079–1098MATHCrossRef Fang N, Dewhurst P (2005) Slip-line modeling of built-up edge formation in machining. Int J Mech Sci 47(7):1079–1098MATHCrossRef
23.
Zurück zum Zitat Wegener K (2014) Cutting edge influence on machining titanium alloy. In: Laperrière L, Reinhart G (eds) The International Academy for Production Engineering. CIRP Encyclopedia of Production Engineering. Springer Wegener K (2014) Cutting edge influence on machining titanium alloy. In: Laperrière L, Reinhart G (eds) The International Academy for Production Engineering. CIRP Encyclopedia of Production Engineering. Springer
24.
Zurück zum Zitat Adem KA, Fales R, El-Gizawy AS (2015) Identification of cutting force coefficients for the linear and nonlinear force models in end milling process using average forces and optimization technique methods. Int J Adv Manuf Technol 79(9–12):1671–1687CrossRef Adem KA, Fales R, El-Gizawy AS (2015) Identification of cutting force coefficients for the linear and nonlinear force models in end milling process using average forces and optimization technique methods. Int J Adv Manuf Technol 79(9–12):1671–1687CrossRef
25.
Zurück zum Zitat Bassett E, Köhler J, Denkena B (2012) On the honed cutting edge and its side effects during orthogonal turning operations of AISI1045 with coated WC-Co inserts. CIRP J Manuf Sci Technol 5(2):108–126CrossRef Bassett E, Köhler J, Denkena B (2012) On the honed cutting edge and its side effects during orthogonal turning operations of AISI1045 with coated WC-Co inserts. CIRP J Manuf Sci Technol 5(2):108–126CrossRef
26.
Zurück zum Zitat Grzesik W (2014) Machining of spheroidal ductile iron. In: Laperrière L, Reinhart G (eds) The international Academy for Production Engineering, CIRP Encyclopedia of Production Engineering. Springer Grzesik W (2014) Machining of spheroidal ductile iron. In: Laperrière L, Reinhart G (eds) The international Academy for Production Engineering, CIRP Encyclopedia of Production Engineering. Springer
27.
Zurück zum Zitat Ren H, Altintas Y (2000) Mechanics of machining with chamfered tools. J Manuf Sci Eng 122(4):650–659CrossRef Ren H, Altintas Y (2000) Mechanics of machining with chamfered tools. J Manuf Sci Eng 122(4):650–659CrossRef
28.
Zurück zum Zitat Pawade RS, Joshi SS, Brahmankar PK (2008) Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. Int J Mach Tools Manuf 48(1):15–28CrossRef Pawade RS, Joshi SS, Brahmankar PK (2008) Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. Int J Mach Tools Manuf 48(1):15–28CrossRef
29.
Zurück zum Zitat Abukhshim NA, Mativenga PT, Sheikh MA (2006) Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. Int J Mach Tools Manuf 46(7–8):782–800CrossRef Abukhshim NA, Mativenga PT, Sheikh MA (2006) Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. Int J Mach Tools Manuf 46(7–8):782–800CrossRef
30.
Zurück zum Zitat Hao G, Liu Z (2020) The heat partition into cutting tool at tool-chip contact interface during cutting process: a review. Int J Adv Manuf Technol Hao G, Liu Z (2020) The heat partition into cutting tool at tool-chip contact interface during cutting process: a review. Int J Adv Manuf Technol
31.
Zurück zum Zitat Boothroyd G (1988) Fundamentals of metal machining and machine tools, vol 28. CRC Press Boothroyd G (1988) Fundamentals of metal machining and machine tools, vol 28. CRC Press
32.
Zurück zum Zitat Zhang Q, Zhang S, Li J (2017) Three-dimensional finite element simulation of cutting forces and cutting temperature in hard milling of AISI H13 steel. Procedia Manuf 10:37–47CrossRef Zhang Q, Zhang S, Li J (2017) Three-dimensional finite element simulation of cutting forces and cutting temperature in hard milling of AISI H13 steel. Procedia Manuf 10:37–47CrossRef
33.
Zurück zum Zitat Fang G, Zeng P (2005) Three-dimensional thermo–elastic–plastic coupled FEM simulations for metal oblique cutting processes. J Mater Process Technol 168(1):42–48CrossRef Fang G, Zeng P (2005) Three-dimensional thermo–elastic–plastic coupled FEM simulations for metal oblique cutting processes. J Mater Process Technol 168(1):42–48CrossRef
34.
Zurück zum Zitat Richard Y (2007) Investigation of dry machining with embedded heat pipe cooling by finite element analysis and experiments. Int J Adv Manuf Technol 31(9–10):905–914 Richard Y (2007) Investigation of dry machining with embedded heat pipe cooling by finite element analysis and experiments. Int J Adv Manuf Technol 31(9–10):905–914
35.
Zurück zum Zitat Thepsonthi T, Özel T (2015) 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: experimental validations on chip flow and tool wear. J Mater Process Technol 221:128–145CrossRef Thepsonthi T, Özel T (2015) 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: experimental validations on chip flow and tool wear. J Mater Process Technol 221:128–145CrossRef
36.
Zurück zum Zitat Haynes G (2016) Milling machines & milling operations, 2nd edn: the fundamentals of conventional and CNC milling. Cyber Press Haynes G (2016) Milling machines & milling operations, 2nd edn: the fundamentals of conventional and CNC milling. Cyber Press
37.
Zurück zum Zitat Gygax PE (1980) Cutting dynamics and process-structure interactions applied to milling. Wear 62(1):161–184CrossRef Gygax PE (1980) Cutting dynamics and process-structure interactions applied to milling. Wear 62(1):161–184CrossRef
38.
Zurück zum Zitat Alauddin MMBMHM, Mazid MA, El Baradi MA, Hashmi MSJ (1998) Cutting forces in the end milling of Inconel 718. J Mater Process Technol 77(1–3):153–159CrossRef Alauddin MMBMHM, Mazid MA, El Baradi MA, Hashmi MSJ (1998) Cutting forces in the end milling of Inconel 718. J Mater Process Technol 77(1–3):153–159CrossRef
39.
Zurück zum Zitat Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. Ann CIRP 44(1):357–362CrossRef Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. Ann CIRP 44(1):357–362CrossRef
40.
Zurück zum Zitat Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling—part I: general formulation Part II: application to common milling systems. Trans ASME J Dyn Syst Measure Control 120:22–36CrossRef Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling—part I: general formulation Part II: application to common milling systems. Trans ASME J Dyn Syst Measure Control 120:22–36CrossRef
41.
Zurück zum Zitat Insperger T, Stephen G (2004) Updated Semi-discretization method for periodic delay—differential equations with discrete delay. Int J Numer Meth Eng 61:117–141MathSciNetMATHCrossRef Insperger T, Stephen G (2004) Updated Semi-discretization method for periodic delay—differential equations with discrete delay. Int J Numer Meth Eng 61:117–141MathSciNetMATHCrossRef
42.
Zurück zum Zitat Merdol D, Altintas Y (2004) Multi frequency solution of chatter stability for low immersion milling. Trans ASME J Manuf Sci Eng 126(3):459–466CrossRef Merdol D, Altintas Y (2004) Multi frequency solution of chatter stability for low immersion milling. Trans ASME J Manuf Sci Eng 126(3):459–466CrossRef
43.
Zurück zum Zitat Li ZQ, Liu Q (2008) Solution and analysis of chatter stability for end milling in the time-domain. Chin J Aeronaut 21(4):169–178 Li ZQ, Liu Q (2008) Solution and analysis of chatter stability for end milling in the time-domain. Chin J Aeronaut 21(4):169–178
44.
Zurück zum Zitat Ding Y, Zhu LM, Zhang XJ, Ding H (2010) Second-order full-discretization method for milling stability prediction. Int J Mach Tools Manuf 50:502–509CrossRef Ding Y, Zhu LM, Zhang XJ, Ding H (2010) Second-order full-discretization method for milling stability prediction. Int J Mach Tools Manuf 50:502–509CrossRef
45.
Zurück zum Zitat Toenshoff HK, Denkena B (2013) Basics of cutting and abrasive processes. Springer Toenshoff HK, Denkena B (2013) Basics of cutting and abrasive processes. Springer
46.
Zurück zum Zitat Schulz H, Moriwaki T (1992) High-speed machining. CIRP Ann 41(2):637–642CrossRef Schulz H, Moriwaki T (1992) High-speed machining. CIRP Ann 41(2):637–642CrossRef
47.
Zurück zum Zitat Schulz H (2003) High-speed machining. In: Manufacturing technologies for machines of the future, pp 197–214 Schulz H (2003) High-speed machining. In: Manufacturing technologies for machines of the future, pp 197–214
48.
Zurück zum Zitat Neugebauer R, Bouzakis KD, Denkena B et al (2011) Velocity effects in metal forming and machining processes. CIRP Ann 60(2):627–650CrossRef Neugebauer R, Bouzakis KD, Denkena B et al (2011) Velocity effects in metal forming and machining processes. CIRP Ann 60(2):627–650CrossRef
49.
Zurück zum Zitat Wan M, Zhang WH, Qin GH, Tan G (2007) Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills. Int J Mach Tools Manuf 47(11):1767–1776CrossRef Wan M, Zhang WH, Qin GH, Tan G (2007) Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills. Int J Mach Tools Manuf 47(11):1767–1776CrossRef
50.
Zurück zum Zitat Zhu Z, Yan R, Peng F, Duan X et al (2016) Parametric chip thickness model based cutting forces estimation considering cutter runout of five-axis general end milling. Int J Mach Tools Manuf 101(2):35–51CrossRef Zhu Z, Yan R, Peng F, Duan X et al (2016) Parametric chip thickness model based cutting forces estimation considering cutter runout of five-axis general end milling. Int J Mach Tools Manuf 101(2):35–51CrossRef
51.
Zurück zum Zitat Sun C, Altintas Y (2016) Chatter free tool orientations in 5-axis ball-end milling. Int J Mach Tools Manuf 106(7):89–97CrossRef Sun C, Altintas Y (2016) Chatter free tool orientations in 5-axis ball-end milling. Int J Mach Tools Manuf 106(7):89–97CrossRef
52.
Zurück zum Zitat Yang Y, Zhang WH, Wan M (2011) Effect of cutter runout on process geometry and forces in peripheral milling of curved surfaces with variable curvature. Int J Mach Tools Manuf 51(5):420–427CrossRef Yang Y, Zhang WH, Wan M (2011) Effect of cutter runout on process geometry and forces in peripheral milling of curved surfaces with variable curvature. Int J Mach Tools Manuf 51(5):420–427CrossRef
53.
Zurück zum Zitat Schmitz TL, Couey J, Marsh E, Mauntler N, Hughes D (2007) Runout effects in milling: surface finish, surface location error, and stability. Int J Mach Tools Manuf 47(5):841–851CrossRef Schmitz TL, Couey J, Marsh E, Mauntler N, Hughes D (2007) Runout effects in milling: surface finish, surface location error, and stability. Int J Mach Tools Manuf 47(5):841–851CrossRef
54.
Zurück zum Zitat Li KX, Zhu KP, Mei T (2016) A generic instantaneous undeformed chip thickness model for the cutting force modeling in micromilling. Int J Mach Tools Manuf 105(6):23–31CrossRef Li KX, Zhu KP, Mei T (2016) A generic instantaneous undeformed chip thickness model for the cutting force modeling in micromilling. Int J Mach Tools Manuf 105(6):23–31CrossRef
55.
Zurück zum Zitat Wang SB, Geng L, Zhang YF, Liu K, Ng TE (2015) Cutting force prediction for five-axis ball-end milling considering cutter vibrations and run-out. Int J Mech Sci 96–97(6):206–215CrossRef Wang SB, Geng L, Zhang YF, Liu K, Ng TE (2015) Cutting force prediction for five-axis ball-end milling considering cutter vibrations and run-out. Int J Mech Sci 96–97(6):206–215CrossRef
56.
Zurück zum Zitat Zhu K, Zhang Y (2017) Modeling of the instantaneous milling force per tooth with tool run-out effect in high speed ball-end milling. Int J Mach Tools Manuf 118:37–48CrossRef Zhu K, Zhang Y (2017) Modeling of the instantaneous milling force per tooth with tool run-out effect in high speed ball-end milling. Int J Mach Tools Manuf 118:37–48CrossRef
57.
Zurück zum Zitat Liang SY, Hecker RL, Landers RG (2004) Machining process monitoring and control: the state-of-the-art. Trans ASME J Manuf Sci Eng 126–122:297–310 Liang SY, Hecker RL, Landers RG (2004) Machining process monitoring and control: the state-of-the-art. Trans ASME J Manuf Sci Eng 126–122:297–310
58.
Zurück zum Zitat Matsubara A, Ibaraki S (2009) Monitoring and control of cutting forces in machining processes: a review. Int J Automation Technol 3(4):445–456CrossRef Matsubara A, Ibaraki S (2009) Monitoring and control of cutting forces in machining processes: a review. Int J Automation Technol 3(4):445–456CrossRef
59.
Zurück zum Zitat Lauderbaugh LK, Ulsoy AG (1988) Dynamic modeling for control of the milling process. ASME J Eng Ind 110(4):367–375CrossRef Lauderbaugh LK, Ulsoy AG (1988) Dynamic modeling for control of the milling process. ASME J Eng Ind 110(4):367–375CrossRef
60.
Zurück zum Zitat Koren Y, Masory O (1981) Adaptive control with process estimation. Ann CIRP 30(1):373–376CrossRef Koren Y, Masory O (1981) Adaptive control with process estimation. Ann CIRP 30(1):373–376CrossRef
61.
Zurück zum Zitat Lauderbaugh LK, Ulsoy AG (1989) Model reference adaptive force control in milling. ASME J Eng Ind 111(1):13–21CrossRef Lauderbaugh LK, Ulsoy AG (1989) Model reference adaptive force control in milling. ASME J Eng Ind 111(1):13–21CrossRef
62.
Zurück zum Zitat Barthel JW, Shin YC (1993) Adaptive control of non-minimum phase processes with application to the end milling processes. In: Proceedings of the American control conference, pp 2449–2454 Barthel JW, Shin YC (1993) Adaptive control of non-minimum phase processes with application to the end milling processes. In: Proceedings of the American control conference, pp 2449–2454
63.
Zurück zum Zitat Rober SJ, Shin YC (1996) Control of cutting force for end milling processes using an extended model reference adaptive control scheme. ASME J Manuf Sci Eng 118(3):339–347CrossRef Rober SJ, Shin YC (1996) Control of cutting force for end milling processes using an extended model reference adaptive control scheme. ASME J Manuf Sci Eng 118(3):339–347CrossRef
64.
Zurück zum Zitat Altintas Y, Aslan D (2017) Integration of virtual and on-line machining process control and Monitoring. CIRP Ann Manuf Technol 66:349–352CrossRef Altintas Y, Aslan D (2017) Integration of virtual and on-line machining process control and Monitoring. CIRP Ann Manuf Technol 66:349–352CrossRef
65.
Zurück zum Zitat Tarng YS, Hwang ST (1995) Adaptive learning control of milling operations. Mechatronics 5(8):937–948CrossRef Tarng YS, Hwang ST (1995) Adaptive learning control of milling operations. Mechatronics 5(8):937–948CrossRef
66.
Zurück zum Zitat Luo T, Lu W, Krishnamurthy K, McMillin B (1998) A neural network approach for force and contour error control in multi-dimensional end milling operations. Int J Mach Tools Manuf 38:1343–1359CrossRef Luo T, Lu W, Krishnamurthy K, McMillin B (1998) A neural network approach for force and contour error control in multi-dimensional end milling operations. Int J Mach Tools Manuf 38:1343–1359CrossRef
67.
Zurück zum Zitat Landers RG, Ulsoy AG, Ma Y-H (2004) A comparison of model-based machining force control approaches. Int J Mach Tools Manuf 44(7–8):733–748CrossRef Landers RG, Ulsoy AG, Ma Y-H (2004) A comparison of model-based machining force control approaches. Int J Mach Tools Manuf 44(7–8):733–748CrossRef
68.
Zurück zum Zitat Stemmler S, Abel D, Schwenzer M, Adams O, Klocke F (2017) Model predictive control for force control in milling. IFAC-Papers OnLine 50(1):15871–15876CrossRef Stemmler S, Abel D, Schwenzer M, Adams O, Klocke F (2017) Model predictive control for force control in milling. IFAC-Papers OnLine 50(1):15871–15876CrossRef
Metadaten
Titel
Modeling of the Machining Process
verfasst von
Kunpeng Zhu
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-87878-8_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.