Skip to main content
Erschienen in: Energy Efficiency 2/2019

26.05.2018 | Original Article

Modeling on building sector’s carbon mitigation in China to achieve the 1.5 °C climate target

verfasst von: Han Chen, Lining Wang, Wenying Chen

Erschienen in: Energy Efficiency | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ambitious goal of limiting end-of-century temperature rise relative to pre-industry level below 1.5 °C will offer both great challenges and opportunities in terms of curbing energy use and CO2 emissions for the building sector of China. This paper simulates the long-term trend (2010–2100) of energy consumption and CO2 emissions of the building sector in China, within the framework of 1.5 °C climate target, with application of GCAM-TU model. The impacts of energy efficiency improvement and carbon policy on energy savings and emission reductions are also explored. The results show that direct CO2 emissions from the building sector would have to peak around 2030, and cumulative emissions during 2015–2100 would be limited to 48.2 Gt CO2 in the 1.5 °C-consistent scenario. The share of electricity in building’s energy consumption by the mid-century would be 8.9% higher than that under 2 °C scenario. Accelerating efficiency improvement would create significant energy savings relative to the reference scenario, especially in space heating and cooling. However, the emission reductions required by the 1.5 °C temperature increase limit cannot be effectively achieved without the collaboration of economic-wide carbon policy, which would play important role in the deep decarbonization of the energy system. Finally, it is suggested that policy makers should further strengthen technological efficiency improvement in the building sector to help enhance energy performance, while carefully devising prospective carbon policies to facilitate fast and early mitigation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Chen, W., Yin, X., & Zhang, H. (2016). Towards low carbon development in China: a comparison of national and global models. Climatic Change, 136(1), 95–108.CrossRef Chen, W., Yin, X., & Zhang, H. (2016). Towards low carbon development in China: a comparison of national and global models. Climatic Change, 136(1), 95–108.CrossRef
Zurück zum Zitat Deason, J. & Hobbs, A. (2011). Codes to cleaner buildings: effectiveness of U.S. building energy codes. Cimate Policy Initiative. Deason, J. & Hobbs, A. (2011). Codes to cleaner buildings: effectiveness of U.S. building energy codes. Cimate Policy Initiative.
Zurück zum Zitat Energy Conservation Center (ECC). (2012). EDMC handbook of energy & economic statistics in Japan. Energy Conservation Center (ECC). (2012). EDMC handbook of energy & economic statistics in Japan.
Zurück zum Zitat Eom, J., Clarke, L., Kim, S. H., Kyle, P., & Patel, P. (2012). China’s building energy demand: long-term implications from a detailed assessment. Energy, 46(1), 405–419.CrossRef Eom, J., Clarke, L., Kim, S. H., Kyle, P., & Patel, P. (2012). China’s building energy demand: long-term implications from a detailed assessment. Energy, 46(1), 405–419.CrossRef
Zurück zum Zitat Intergovernmental Panel on Climate Change (IPCC). (2014). Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland. https://www.ipcc.ch/report/ar5/syr/. Accessed 16 Feb 2016. Intergovernmental Panel on Climate Change (IPCC). (2014). Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland. https://​www.​ipcc.​ch/​report/​ar5/​syr/​. Accessed 16 Feb 2016.
Zurück zum Zitat International Energy Agency (IEA). (2012). World energy outlook 2012. Paris: IEA.CrossRef International Energy Agency (IEA). (2012). World energy outlook 2012. Paris: IEA.CrossRef
Zurück zum Zitat Li, J., & Shui, B. (2015). A comprehensive analysis of building energy efficiency policies in China: status quo and development perspective. Journal of Cleaner Production, 90(Supplement C), 326–344.CrossRef Li, J., & Shui, B. (2015). A comprehensive analysis of building energy efficiency policies in China: status quo and development perspective. Journal of Cleaner Production, 90(Supplement C), 326–344.CrossRef
Zurück zum Zitat Lü, X., Lu, T., Kibert, C. J., & Viljanen, M. (2015). Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach. Applied Energy, 144, 261–275.CrossRef Lü, X., Lu, T., Kibert, C. J., & Viljanen, M. (2015). Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach. Applied Energy, 144, 261–275.CrossRef
Zurück zum Zitat McNeil, M. A., Feng, W., de la Rue du Can, S., Khanna, N. Z., Ke, J., & Zhou, N. (2016). Energy efficiency outlook in China’s urban buildings sector through 2030. Energy Policy, 97, 532–539.CrossRef McNeil, M. A., Feng, W., de la Rue du Can, S., Khanna, N. Z., Ke, J., & Zhou, N. (2016). Energy efficiency outlook in China’s urban buildings sector through 2030. Energy Policy, 97, 532–539.CrossRef
Zurück zum Zitat Ministry of Housing and Urban-Rural Development (MOHURD). (2012). Building energy efficiency strategic plan for the twelfth five-year period. Beijing, China. Ministry of Housing and Urban-Rural Development (MOHURD). (2012). Building energy efficiency strategic plan for the twelfth five-year period. Beijing, China.
Zurück zum Zitat Ministry of Housing and Urban-Rural Development (MOHURD). (2017). Building energy conservation and green building development in the 13th Five-Year-Plan. Beijing, China. Ministry of Housing and Urban-Rural Development (MOHURD). (2017). Building energy conservation and green building development in the 13th Five-Year-Plan. Beijing, China.
Zurück zum Zitat Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). (1986). Design standard for energy efficiency of residential buildings in severe cold and cold zones. JGJ 26-1986. Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). (1986). Design standard for energy efficiency of residential buildings in severe cold and cold zones. JGJ 26-1986.
Zurück zum Zitat Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). (2010). Design standard for energy efficiency of residential buildings in hot summer and cold winter zone. JGJ134-2010. Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). (2010). Design standard for energy efficiency of residential buildings in hot summer and cold winter zone. JGJ134-2010.
Zurück zum Zitat Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). (2012). Existing residential building energy conservation guide. JGJ/T119-2012. Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). (2012). Existing residential building energy conservation guide. JGJ/T119-2012.
Zurück zum Zitat Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). (2013). Design standard for energy efficiency of rural residential buildings. GB/T 50824-2013. Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). (2013). Design standard for energy efficiency of rural residential buildings. GB/T 50824-2013.
Zurück zum Zitat Pan, X., Chen, W., Clarke, L. E., Wang, L., & Liu, G. (2017). China’s energy system transformation towards the 2 °C goal: implications of different effort-sharing principles. Energy Policy, 103, 116–126.CrossRef Pan, X., Chen, W., Clarke, L. E., Wang, L., & Liu, G. (2017). China’s energy system transformation towards the 2 °C goal: implications of different effort-sharing principles. Energy Policy, 103, 116–126.CrossRef
Zurück zum Zitat Peng, C., Yan, D., Guo, S., Hu, S., & Jiang, Y. (2015). Building energy use in China: ceiling and scenario. Energy and Buildings, 102, 307–316.CrossRef Peng, C., Yan, D., Guo, S., Hu, S., & Jiang, Y. (2015). Building energy use in China: ceiling and scenario. Energy and Buildings, 102, 307–316.CrossRef
Zurück zum Zitat Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015). Energy system transformations for limiting end-of-century warming to below 1.5°C. Nature Climate Change, 5, 519–527.CrossRef Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015). Energy system transformations for limiting end-of-century warming to below 1.5°C. Nature Climate Change, 5, 519–527.CrossRef
Zurück zum Zitat Royapoor, M., & Roskilly, T. (2015). Building model calibration using energy and environmental data. Energy and Buildings, 94, 109–120.CrossRef Royapoor, M., & Roskilly, T. (2015). Building model calibration using energy and environmental data. Energy and Buildings, 94, 109–120.CrossRef
Zurück zum Zitat Schleussner, C. F., Rogelj, J., Schaeffer, M., Lissner, T., Licker, R., Fischer, E. M., Knutti, R., Levermann, A., Frieler, K., & Hare, W. (2016). Science and policy characteristics of the Paris Agreement temperature goal. Nature Climate Change, 6(9), 827–835.CrossRef Schleussner, C. F., Rogelj, J., Schaeffer, M., Lissner, T., Licker, R., Fischer, E. M., Knutti, R., Levermann, A., Frieler, K., & Hare, W. (2016). Science and policy characteristics of the Paris Agreement temperature goal. Nature Climate Change, 6(9), 827–835.CrossRef
Zurück zum Zitat Shi, J., Chen, W., & Yin, X. (2016). Modelling building’s decarbonization with application of China TIMES model. Applied Energy, 162, 1303–1312.CrossRef Shi, J., Chen, W., & Yin, X. (2016). Modelling building’s decarbonization with application of China TIMES model. Applied Energy, 162, 1303–1312.CrossRef
Zurück zum Zitat Wang, L., Patel, P. L., Yu, S., Liu, B., Mcleod, J., Clarke, L. E., et al. (2016). Win–win strategies to promote air pollutant control policies and non-fossil energy target regulation in China. Applied Energy, 163, 244–253.CrossRef Wang, L., Patel, P. L., Yu, S., Liu, B., Mcleod, J., Clarke, L. E., et al. (2016). Win–win strategies to promote air pollutant control policies and non-fossil energy target regulation in China. Applied Energy, 163, 244–253.CrossRef
Zurück zum Zitat Wang, L., Chen, W., Zhang, H., & Ma, D. (2017). Dynamic equity carbon permit allocation scheme to limit global warming to two degrees. Mitigation and Adaptation Strategies for Global Change, 22(4), 609–628.CrossRef Wang, L., Chen, W., Zhang, H., & Ma, D. (2017). Dynamic equity carbon permit allocation scheme to limit global warming to two degrees. Mitigation and Adaptation Strategies for Global Change, 22(4), 609–628.CrossRef
Zurück zum Zitat Wang, H., Chen, W., & Shi, J. (2018a). Low carbon transition of global building sector under 2- and 1.5-degree targets. Applied Energy, 222, 148–157.CrossRef Wang, H., Chen, W., & Shi, J. (2018a). Low carbon transition of global building sector under 2- and 1.5-degree targets. Applied Energy, 222, 148–157.CrossRef
Zurück zum Zitat Wang, L., Chen, W., Pan, X., Li, N., Wang, H., Li, D., & Chen, H. (2018b). Scale and benefit of global carbon markets under the 2 °C goal: integrated modeling and an effort-sharing platform. Mitigation and Adaptation Strategies for Global Change. https://doi.org/10.1007/s11027-018-9781-4. Wang, L., Chen, W., Pan, X., Li, N., Wang, H., Li, D., & Chen, H. (2018b). Scale and benefit of global carbon markets under the 2 °C goal: integrated modeling and an effort-sharing platform. Mitigation and Adaptation Strategies for Global Change. https://​doi.​org/​10.​1007/​s11027-018-9781-4.
Zurück zum Zitat Xiao, H., Wei, Q., & Wang, H. (2014). Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China’s building sector to 2030. Energy Policy, 69(Supplement C), 92–105.CrossRef Xiao, H., Wei, Q., & Wang, H. (2014). Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China’s building sector to 2030. Energy Policy, 69(Supplement C), 92–105.CrossRef
Zurück zum Zitat Yin, X., Chen, W., Eom, J., Clarke, L. E., Kim, S. H., Patel, P. L., Yu, S., & Kyle, G. P. (2015). China’s transportation energy consumption and CO2 emissions from a global perspective. Energy Policy, 82(1), 233–248.CrossRef Yin, X., Chen, W., Eom, J., Clarke, L. E., Kim, S. H., Patel, P. L., Yu, S., & Kyle, G. P. (2015). China’s transportation energy consumption and CO2 emissions from a global perspective. Energy Policy, 82(1), 233–248.CrossRef
Zurück zum Zitat Yu, S., Eom, J., Evans, M., & Clarke, L. (2014a). A long-term, integrated impact assessment of alternative building energy code scenarios in China. Energy Policy, 67, 626–639.CrossRef Yu, S., Eom, J., Evans, M., & Clarke, L. (2014a). A long-term, integrated impact assessment of alternative building energy code scenarios in China. Energy Policy, 67, 626–639.CrossRef
Zurück zum Zitat Yu, S., Eom, J., Zhou, Y., Evans, M., & Clarke, L. (2014b). Scenarios of building energy demand for China with a detailed regional representation. Energy, 67, 284–297.CrossRef Yu, S., Eom, J., Zhou, Y., Evans, M., & Clarke, L. (2014b). Scenarios of building energy demand for China with a detailed regional representation. Energy, 67, 284–297.CrossRef
Zurück zum Zitat Zhou, N., & Lin, J. (2008). The reality and future scenarios of commercial building energy consumption in China. Energy and Buildings, 40(12), 2121–2127.CrossRef Zhou, N., & Lin, J. (2008). The reality and future scenarios of commercial building energy consumption in China. Energy and Buildings, 40(12), 2121–2127.CrossRef
Zurück zum Zitat Zhou, N., Fridley, D., McNeil, M. A., Zheng, N., Ke, J., & Levine, M. (2011). China’s energy and carbon emissions outlook. LBNL-4472E. Berkeley: Lawrence Berkeley National Laboratory. Zhou, N., Fridley, D., McNeil, M. A., Zheng, N., Ke, J., & Levine, M. (2011). China’s energy and carbon emissions outlook. LBNL-4472E. Berkeley: Lawrence Berkeley National Laboratory.
Metadaten
Titel
Modeling on building sector’s carbon mitigation in China to achieve the 1.5 °C climate target
verfasst von
Han Chen
Lining Wang
Wenying Chen
Publikationsdatum
26.05.2018
Verlag
Springer Netherlands
Erschienen in
Energy Efficiency / Ausgabe 2/2019
Print ISSN: 1570-646X
Elektronische ISSN: 1570-6478
DOI
https://doi.org/10.1007/s12053-018-9687-8

Weitere Artikel der Ausgabe 2/2019

Energy Efficiency 2/2019 Zur Ausgabe