Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2010

01.06.2010

Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation

verfasst von: Philip J. Hahn, Cameron C. McIntyre

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep brain stimulation (DBS) of the subthlamic nucleus (STN) represents an effective treatment for medically refractory Parkinson’s disease; however, understanding of its effects on basal ganglia network activity remains limited. We constructed a computational model of the subthalamopallidal network, trained it to fit in vivo recordings from parkinsonian monkeys, and evaluated its response to STN DBS. The network model was created with synaptically connected single compartment biophysical models of STN and pallidal neurons, and stochastically defined inputs driven by cortical beta rhythms. A least mean square error training algorithm was developed to parameterize network connections and minimize error when compared to experimental spike and burst rates in the parkinsonian condition. The output of the trained network was then compared to experimental data not used in the training process. We found that reducing the influence of the cortical beta input on the model generated activity that agreed well with recordings from normal monkeys. Further, during STN DBS in the parkinsonian condition the simulations reproduced the reduction in GPi bursting found in existing experimental data. The model also provided the opportunity to greatly expand analysis of GPi bursting activity, generating three major predictions. First, its reduction was proportional to the volume of STN activated by DBS. Second, GPi bursting decreased in a stimulation frequency dependent manner, saturating at values consistent with clinically therapeutic DBS. And third, ablating STN neurons, reported to generate similar therapeutic outcomes as STN DBS, also reduced GPi bursting. Our theoretical analysis of stimulation induced network activity suggests that regularization of GPi firing is dependent on the volume of STN tissue activated and a threshold level of burst reduction may be necessary for therapeutic effect.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alvarez, L., Macias, R., Pavon, N., Lopez, G., Rodriguez-Oroz, M. C., Rodriguez, R., et al. (2009). Therapeutic efficacy of unilateral subthalamotomy in Parkinson's disease: results in 89 patients followed for up to 36 months. Journal of Neurology, Neurosurgery and Psychiatry, 80, 979–985.CrossRef Alvarez, L., Macias, R., Pavon, N., Lopez, G., Rodriguez-Oroz, M. C., Rodriguez, R., et al. (2009). Therapeutic efficacy of unilateral subthalamotomy in Parkinson's disease: results in 89 patients followed for up to 36 months. Journal of Neurology, Neurosurgery and Psychiatry, 80, 979–985.CrossRef
Zurück zum Zitat Bekar, L., Libionka, W., Tian, G. F., Xu, Q., Torres, A., Wang, X., et al. (2008). Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nature Medicine, 14, 75–80.CrossRefPubMed Bekar, L., Libionka, W., Tian, G. F., Xu, Q., Torres, A., Wang, X., et al. (2008). Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nature Medicine, 14, 75–80.CrossRefPubMed
Zurück zum Zitat Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. R. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72, 507–520.PubMed Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. R. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72, 507–520.PubMed
Zurück zum Zitat Bevan, M. D., Magill, P. J., Terman, D., Bolam, J. P., & Wilson, C. J. (2002). Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends in Neurosciences, 25(10), 525–31.CrossRefPubMed Bevan, M. D., Magill, P. J., Terman, D., Bolam, J. P., & Wilson, C. J. (2002). Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends in Neurosciences, 25(10), 525–31.CrossRefPubMed
Zurück zum Zitat Birdno, M. J., Kuncel, A. M., Dorval, A. D., Turner, D. A., & Grill, W. M. (2008). Tremor varies as a function of the temporal regularity of deep brain stimulation. NeuroReport, 19, 599–602.CrossRefPubMed Birdno, M. J., Kuncel, A. M., Dorval, A. D., Turner, D. A., & Grill, W. M. (2008). Tremor varies as a function of the temporal regularity of deep brain stimulation. NeuroReport, 19, 599–602.CrossRefPubMed
Zurück zum Zitat Brown, P. (2000). Cortical drives to human muscle: the Piper and related rhythms. Progress in Neurobiology, 60, 97–108.CrossRefPubMed Brown, P. (2000). Cortical drives to human muscle: the Piper and related rhythms. Progress in Neurobiology, 60, 97–108.CrossRefPubMed
Zurück zum Zitat Brown, P., & Williams, D. (2005). Basal ganglia local field potential activity: character and functional significance in the human. Clinical Neurophysiology, 116, 2510–2519.CrossRefPubMed Brown, P., & Williams, D. (2005). Basal ganglia local field potential activity: character and functional significance in the human. Clinical Neurophysiology, 116, 2510–2519.CrossRefPubMed
Zurück zum Zitat Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease. Journal of Neuroscience, 21, 1033–1038.PubMed Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease. Journal of Neuroscience, 21, 1033–1038.PubMed
Zurück zum Zitat Butson, C. R., Cooper, S. E., Henderson, J. M., & McIntyre, C. C. (2007). Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage, 34, 661–670.CrossRefPubMed Butson, C. R., Cooper, S. E., Henderson, J. M., & McIntyre, C. C. (2007). Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage, 34, 661–670.CrossRefPubMed
Zurück zum Zitat Carnevale, N. T., Hines, M. L. (2005). The Neuron book. Cambridge University Press. Carnevale, N. T., Hines, M. L. (2005). The Neuron book. Cambridge University Press.
Zurück zum Zitat Cooper, A. J., & Stanford, I. M. (2000). Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. Journal of Physiology, 527(Pt 2), 291–304.CrossRefPubMed Cooper, A. J., & Stanford, I. M. (2000). Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. Journal of Physiology, 527(Pt 2), 291–304.CrossRefPubMed
Zurück zum Zitat Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. Journal of Neuroscience, 23, 11741–11752.PubMed Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. Journal of Neuroscience, 23, 11741–11752.PubMed
Zurück zum Zitat Dejean, C., Gross, C. E., Bioulac, B., & Boraud, T. (2008). Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat. Journal of Neurophysiology, 100, 385–396.CrossRefPubMed Dejean, C., Gross, C. E., Bioulac, B., & Boraud, T. (2008). Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat. Journal of Neurophysiology, 100, 385–396.CrossRefPubMed
Zurück zum Zitat Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994a). An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation, 6, 10–14.CrossRef Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994a). An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation, 6, 10–14.CrossRef
Zurück zum Zitat Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994b). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.CrossRef Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994b). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.CrossRef
Zurück zum Zitat Feng, X. J., Greenwald, B., Rabitz, H., Shea-Brown, E., & Kosut, R. (2007). Toward closed-loop optimization of deep brain stimulation for Parkinson's disease: concepts and lessons from a computational model. Journal of Neural Engineering, 4, L14–L21.CrossRefPubMed Feng, X. J., Greenwald, B., Rabitz, H., Shea-Brown, E., & Kosut, R. (2007). Toward closed-loop optimization of deep brain stimulation for Parkinson's disease: concepts and lessons from a computational model. Journal of Neural Engineering, 4, L14–L21.CrossRefPubMed
Zurück zum Zitat Galvan, A., & Wichmann, T. (2008). Pathophysiology of parkinsonism. Clinical Neurophysiology, 119, 1459–1474.CrossRefPubMed Galvan, A., & Wichmann, T. (2008). Pathophysiology of parkinsonism. Clinical Neurophysiology, 119, 1459–1474.CrossRefPubMed
Zurück zum Zitat Goldberg, J. A., Kats, S. S., & Jaeger, D. (2003). Globus pallidus discharge is coincident with striatal activity during global slow wave activity in the rat. Journal of Neuroscience, 23, 10058–10063.PubMed Goldberg, J. A., Kats, S. S., & Jaeger, D. (2003). Globus pallidus discharge is coincident with striatal activity during global slow wave activity in the rat. Journal of Neuroscience, 23, 10058–10063.PubMed
Zurück zum Zitat Goldberg, J. A., Rokni, U., Boraud, T., Vaadia, E., & Bergman, H. (2004). Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials. Journal of Neuroscience, 24, 6003–6010.CrossRefPubMed Goldberg, J. A., Rokni, U., Boraud, T., Vaadia, E., & Bergman, H. (2004). Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials. Journal of Neuroscience, 24, 6003–6010.CrossRefPubMed
Zurück zum Zitat Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science, 324, 354–359.CrossRefPubMed Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science, 324, 354–359.CrossRefPubMed
Zurück zum Zitat Guo, Y., Rubin, J. E., McIntyre, C. C., Vitek, J. L., & Terman, D. (2008). Thalamocortical relay fidelity varies across subthalamic nucleus deep brain stimulation protocols in a data-driven computational model. Journal of Neurophysiology, 99, 1477–1492.CrossRefPubMed Guo, Y., Rubin, J. E., McIntyre, C. C., Vitek, J. L., & Terman, D. (2008). Thalamocortical relay fidelity varies across subthalamic nucleus deep brain stimulation protocols in a data-driven computational model. Journal of Neurophysiology, 99, 1477–1492.CrossRefPubMed
Zurück zum Zitat Hahn, P. J., Russo, G. S., Hashimoto, T., Miocinovic, S., Xu, W., McIntyre, C. C., et al. (2008). Pallidal burst activity during therapeutic deep brain stimulation. Experimental Neurology, 211, 243–251.CrossRefPubMed Hahn, P. J., Russo, G. S., Hashimoto, T., Miocinovic, S., Xu, W., McIntyre, C. C., et al. (2008). Pallidal burst activity during therapeutic deep brain stimulation. Experimental Neurology, 211, 243–251.CrossRefPubMed
Zurück zum Zitat Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends in Neurosciences, 30, 357–364.CrossRefPubMed Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends in Neurosciences, 30, 357–364.CrossRefPubMed
Zurück zum Zitat Hardman, C. D., Henderson, J. M., Finkelstein, D. I., Horne, M. K., Paxinos, G., & Halliday, G. M. (2002). Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. Journal of Comparative Neurology, 445, 238–255.CrossRefPubMed Hardman, C. D., Henderson, J. M., Finkelstein, D. I., Horne, M. K., Paxinos, G., & Halliday, G. M. (2002). Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. Journal of Comparative Neurology, 445, 238–255.CrossRefPubMed
Zurück zum Zitat Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. Journal of Neuroscience, 23, 1916–1923.PubMed Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. Journal of Neuroscience, 23, 1916–1923.PubMed
Zurück zum Zitat Humphries, M. D., Stewart, R. D., & Gurney, K. N. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. Journal of Neuroscience, 26, 12921–12942.CrossRefPubMed Humphries, M. D., Stewart, R. D., & Gurney, K. N. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. Journal of Neuroscience, 26, 12921–12942.CrossRefPubMed
Zurück zum Zitat Kuhn, A. A., Trottenberg, T., Kivi, A., Kupsch, A., Schneider, G. H., & Brown, P. (2005). The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson's disease. Experimental Neurology, 194, 212–220.CrossRefPubMed Kuhn, A. A., Trottenberg, T., Kivi, A., Kupsch, A., Schneider, G. H., & Brown, P. (2005). The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson's disease. Experimental Neurology, 194, 212–220.CrossRefPubMed
Zurück zum Zitat Leblois, A., Boraud, T., Meissner, W., Bergman, H., & Hansel, D. (2006). Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. Journal of Neuroscience, 26, 3567–3583.CrossRefPubMed Leblois, A., Boraud, T., Meissner, W., Bergman, H., & Hansel, D. (2006). Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. Journal of Neuroscience, 26, 3567–3583.CrossRefPubMed
Zurück zum Zitat Li, S., Arbuthnott, G. W., Jutras, M. J., Goldberg, J. A., & Jaeger, D. (2007). Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. Journal of Neurophysiology, 98, 3525–3537.CrossRefPubMed Li, S., Arbuthnott, G. W., Jutras, M. J., Goldberg, J. A., & Jaeger, D. (2007). Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. Journal of Neurophysiology, 98, 3525–3537.CrossRefPubMed
Zurück zum Zitat Magnin, M., Morel, A., & Jeanmonod, D. (2000). Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience, 96, 549–564.CrossRefPubMed Magnin, M., Morel, A., & Jeanmonod, D. (2000). Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience, 96, 549–564.CrossRefPubMed
Zurück zum Zitat Maks, C. B., Butson, C. R., Walter, B. L., Vitek, J. L., & McIntyre, C. C. (2009). Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes. Journal of Neurology, Neurosurgery and Psychiatry, 80, 659–666.CrossRef Maks, C. B., Butson, C. R., Walter, B. L., Vitek, J. L., & McIntyre, C. C. (2009). Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes. Journal of Neurology, Neurosurgery and Psychiatry, 80, 659–666.CrossRef
Zurück zum Zitat Mink, J. W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425.CrossRefPubMed Mink, J. W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425.CrossRefPubMed
Zurück zum Zitat Mink, J. W., & Thach, W. T. (1993). Basal ganglia intrinsic circuits and their role in behavior. Current Opinion in Neurobiology, 3, 950–957.CrossRefPubMed Mink, J. W., & Thach, W. T. (1993). Basal ganglia intrinsic circuits and their role in behavior. Current Opinion in Neurobiology, 3, 950–957.CrossRefPubMed
Zurück zum Zitat Miocinovic, S., Parent, M., Butson, C. R., Hahn, P. J., Russo, G. S., Vitek, J. L., et al. (2006). Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. Journal of Neurophysiology, 96, 1569–1580.CrossRefPubMed Miocinovic, S., Parent, M., Butson, C. R., Hahn, P. J., Russo, G. S., Vitek, J. L., et al. (2006). Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. Journal of Neurophysiology, 96, 1569–1580.CrossRefPubMed
Zurück zum Zitat Modolo, J., Henry, J., & Beuter, A. (2008). Dynamics of the Subthalamo-pallidal Complex in Parkinson's Disease During Deep Brain Stimulation. Journal of biological physics, 34, 251–266.CrossRefPubMed Modolo, J., Henry, J., & Beuter, A. (2008). Dynamics of the Subthalamo-pallidal Complex in Parkinson's Disease During Deep Brain Stimulation. Journal of biological physics, 34, 251–266.CrossRefPubMed
Zurück zum Zitat Montgomery, E. B., Jr., & Baker, K. B. (2000). Mechanisms of deep brain stimulation and future technical developments. Neurological Research, 22, 259–266.PubMed Montgomery, E. B., Jr., & Baker, K. B. (2000). Mechanisms of deep brain stimulation and future technical developments. Neurological Research, 22, 259–266.PubMed
Zurück zum Zitat Nambu, A., & Llinas, R. (1994). Electrophysiology of globus pallidus neurons in vitro. Journal of Neurophysiology, 72, 1127–1139.PubMed Nambu, A., & Llinas, R. (1994). Electrophysiology of globus pallidus neurons in vitro. Journal of Neurophysiology, 72, 1127–1139.PubMed
Zurück zum Zitat Nandhagopal, R., McKeown, M. J., & Stoessl, A. J. (2008). Functional imaging in Parkinson disease. Neurology, 70, 1478–1488.CrossRefPubMed Nandhagopal, R., McKeown, M. J., & Stoessl, A. J. (2008). Functional imaging in Parkinson disease. Neurology, 70, 1478–1488.CrossRefPubMed
Zurück zum Zitat Nini, A., Feingold, A., Slovin, H., & Bergman, H. (1995). Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. Journal of Neurophysiology, 74, 1800–1805.PubMed Nini, A., Feingold, A., Slovin, H., & Bergman, H. (1995). Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. Journal of Neurophysiology, 74, 1800–1805.PubMed
Zurück zum Zitat Otsuka, T., Abe, T., Tsukagawa, T., & Song, W. J. (2004). Conductance-based model of the voltage-dependent generation of a plateau potential in subthalamic neurons. Journal of Neurophysiology, 92, 255–264.CrossRefPubMed Otsuka, T., Abe, T., Tsukagawa, T., & Song, W. J. (2004). Conductance-based model of the voltage-dependent generation of a plateau potential in subthalamic neurons. Journal of Neurophysiology, 92, 255–264.CrossRefPubMed
Zurück zum Zitat Phillips, M. D., Baker, K. B., Lowe, M. J., Tkach, J. A., Cooper, S. E., Kopell, B. H., et al. (2006). Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus–initial experience. Radiology, 239, 209–216.CrossRefPubMed Phillips, M. D., Baker, K. B., Lowe, M. J., Tkach, J. A., Cooper, S. E., Kopell, B. H., et al. (2006). Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus–initial experience. Radiology, 239, 209–216.CrossRefPubMed
Zurück zum Zitat Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400, 677–682.CrossRefPubMed Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400, 677–682.CrossRefPubMed
Zurück zum Zitat Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. (1992). Numerical recipes in C, The art of scientific computing, 2nd edition. Cambridge University Press. Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. (1992). Numerical recipes in C, The art of scientific computing, 2nd edition. Cambridge University Press.
Zurück zum Zitat Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of parkinsonism. Journal of Neuroscience, 20, 8559–8571.PubMed Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of parkinsonism. Journal of Neuroscience, 20, 8559–8571.PubMed
Zurück zum Zitat Rizzone, M., Lanotte, M., Bergamasco, B., Tavella, A., Torre, E., Faccani, G., et al. (2001). Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: effects of variation in stimulation parameters. Journal of Neurology, Neurosurgery and Psychiatry, 71, 215–219.CrossRef Rizzone, M., Lanotte, M., Bergamasco, B., Tavella, A., Torre, E., Faccani, G., et al. (2001). Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: effects of variation in stimulation parameters. Journal of Neurology, Neurosurgery and Psychiatry, 71, 215–219.CrossRef
Zurück zum Zitat Rubchinsky, L. L., Kopell, N., & Sigvardt, K. A. (2003). Modeling facilitation and inhibition of competing motor programs in basal ganglia subthalamic nucleus-pallidal circuits. Proc Natl Acad Sci USA, 100, 14427–14432.CrossRefPubMed Rubchinsky, L. L., Kopell, N., & Sigvardt, K. A. (2003). Modeling facilitation and inhibition of competing motor programs in basal ganglia subthalamic nucleus-pallidal circuits. Proc Natl Acad Sci USA, 100, 14427–14432.CrossRefPubMed
Zurück zum Zitat Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235.CrossRefPubMed Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235.CrossRefPubMed
Zurück zum Zitat Sharott, A., Magill, P. J., Bolam, J. P., & Brown, P. (2005a). Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of the rat. Journal of Physiology, 562, 951–963.CrossRef Sharott, A., Magill, P. J., Bolam, J. P., & Brown, P. (2005a). Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of the rat. Journal of Physiology, 562, 951–963.CrossRef
Zurück zum Zitat Sharott, A., Magill, P. J., Harnack, D., Kupsch, A., Meissner, W., & Brown, P. (2005b). Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. European Journal of Neuroscience, 21, 1413–1422.CrossRef Sharott, A., Magill, P. J., Harnack, D., Kupsch, A., Meissner, W., & Brown, P. (2005b). Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. European Journal of Neuroscience, 21, 1413–1422.CrossRef
Zurück zum Zitat Shils, J. L., Mei, L. Z., & Arle, J. E. (2008). Modeling parkinsonian circuitry and the DBS electrode. II. Evaluation of a computer simulation model of the basal ganglia with and without subthalamic nucleus stimulation. Stereotactic and Functional Neurosurgery, 86, 16–29.CrossRefPubMed Shils, J. L., Mei, L. Z., & Arle, J. E. (2008). Modeling parkinsonian circuitry and the DBS electrode. II. Evaluation of a computer simulation model of the basal ganglia with and without subthalamic nucleus stimulation. Stereotactic and Functional Neurosurgery, 86, 16–29.CrossRefPubMed
Zurück zum Zitat Soares, J., Kliem, M. A., Betarbet, R., Greenamyre, J. T., Yamamoto, B., & Wichmann, T. (2004). Role of external pallidal segment in primate parkinsonism: comparison of the effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced parkinsonism and lesions of the external pallidal segment. Journal of Neuroscience, 24, 6417–6426.CrossRefPubMed Soares, J., Kliem, M. A., Betarbet, R., Greenamyre, J. T., Yamamoto, B., & Wichmann, T. (2004). Role of external pallidal segment in primate parkinsonism: comparison of the effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced parkinsonism and lesions of the external pallidal segment. Journal of Neuroscience, 24, 6417–6426.CrossRefPubMed
Zurück zum Zitat Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89, 81–88.CrossRefPubMed Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89, 81–88.CrossRefPubMed
Zurück zum Zitat Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.PubMed Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.PubMed
Zurück zum Zitat Wichmann, T., & Soares, J. (2006). Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. Journal of Neurophysiology, 95, 2120–2133.CrossRefPubMed Wichmann, T., & Soares, J. (2006). Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. Journal of Neurophysiology, 95, 2120–2133.CrossRefPubMed
Zurück zum Zitat Wichmann, T., Bergman, H., Starr, P. A., Subramanian, T., Watts, R. L., & DeLong, M. R. (1999). Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Experimental Brain Research, 125, 397–409.CrossRef Wichmann, T., Bergman, H., Starr, P. A., Subramanian, T., Watts, R. L., & DeLong, M. R. (1999). Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Experimental Brain Research, 125, 397–409.CrossRef
Zurück zum Zitat Xu, W., Russo, G. S., Hashimoto, T., Zhang, J., & Vitek, J. L. (2008). Subthalamic nucleus stimulation modulates thalamic neuronal activity. J Neurosci, 28, 11916–11924.CrossRefPubMed Xu, W., Russo, G. S., Hashimoto, T., Zhang, J., & Vitek, J. L. (2008). Subthalamic nucleus stimulation modulates thalamic neuronal activity. J Neurosci, 28, 11916–11924.CrossRefPubMed
Metadaten
Titel
Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation
verfasst von
Philip J. Hahn
Cameron C. McIntyre
Publikationsdatum
01.06.2010
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2010
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0225-8

Weitere Artikel der Ausgabe 3/2010

Journal of Computational Neuroscience 3/2010 Zur Ausgabe