Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

16.02.2020 | Ausgabe 4/2020

Water Resources Management 4/2020

Modeling Short Term Rainfall Forecast Using Neural Networks, and Gaussian Process Classification Based on the SPI Drought Index

Zeitschrift:
Water Resources Management > Ausgabe 4/2020
Autoren:
Saeed Azimi, Mehdi Azhdary Moghaddam
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Determining the quantitative occurrence of droughts, discovering the spatial correlation of droughts, and predicting the occurrence of undesirable classes of drinking water quality and aquifer farming is of high importance. In this research, the Standardized Precipitation Index (SPI) was calculated and analyzed with a monthly survey of 26,027 wells in 609 study areas over a period of 20 years. After analyzing the missing data, the annual rainfall was forecasted in 362 synoptic stations of the country based on an artificial intelligence model. In addition, statistical relationships were extracted in order to achieve a comprehensive and historical map of the state of shortages and surpluses of water resources, as well as verification of artificial intelligence relationships in predicting base data cultivars. The results indicated that the “mild drought” indicator was steeper than the “near-normal drought” indicator. Eventually, the southern and eastern regions and certain parts of the northeast of the country in the period from 2005 to 2015 were placed in the 7th and 8th classes, which indicates severe drought. The analysis of the period 1994–2014 showed that the plains of the Sistan and Baluchestan Province in the south-east region of the country have been significantly more affected by the droughts. With the exception of the central parts of Khorasan, the general eastern, southeast, and southern regions of the country can be considered as an absolute drought class for the long term.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2020

Water Resources Management 4/2020 Zur Ausgabe