Skip to main content
Erschienen in: Mechanics of Composite Materials 4/2017

05.09.2017

Modeling the Dynamic Response of a Carbon-Fiber-Reinforced Plate at Resonant Vibrations Considering the Internal Friction in the Material and the External Aerodynamic Damping

verfasst von: V. N. Paimushin, V. A. Firsov, V. M. Shishkin

Erschienen in: Mechanics of Composite Materials | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The frequency dependence for the dynamic elastic modulus of a Porcher 3692 CFRP at frequencies to 112.5 Hz is obtained from an experimental study on damped flexural vibrations of vertical cantilevered test specimens. A finite-element technique is developed for modeling the dynamic response of a long cantilevered carbon-fiber-plastic plate at resonant flexural vibrations according to the first vibration mode with account of internal damping, aerodynamic drag forces, and the frequency-dependent dynamic elastic modulus of the material. The damping properties of the plate are determined by the logarithmic decrement, which depends on the vibration amplitude of its free edge. Numerical experiments were carried out, which confirmed the accuracy of the technique. It is shown that the logarithmic decrement of the plate in the range of medium and high vibration amplitudes depends mainly on the aerodynamic drag forces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. G. Dubenets and V. V. Khil’chevskii, Vibrations of Damped Composite Structures [in Russian], Kiev, Vishcha Shkola, 1995, 210 p. V. G. Dubenets and V. V. Khil’chevskii, Vibrations of Damped Composite Structures [in Russian], Kiev, Vishcha Shkola, 1995, 210 p.
2.
Zurück zum Zitat R. M. Christensen, Introduction into the Theory of Viscoelasticity [in Russian], M., Mir, 1974, 338 p. R. M. Christensen, Introduction into the Theory of Viscoelasticity [in Russian], M., Mir, 1974, 338 p.
3.
Zurück zum Zitat V. V. Matveev, Damping of Vibtations of Deformable Bodies [in Russian], Kiev, Naukova Dumka, 1985, 263 p. V. V. Matveev, Damping of Vibtations of Deformable Bodies [in Russian], Kiev, Naukova Dumka, 1985, 263 p.
4.
Zurück zum Zitat V. A. Pal’mov, Vibrations of Elastic - Plastic Bodies [in Russian], M., Nauka, 1976, 328 p. V. A. Pal’mov, Vibrations of Elastic - Plastic Bodies [in Russian], M., Nauka, 1976, 328 p.
5.
Zurück zum Zitat Ya. G. Panovko, Internal Friction in Vibration of Elastic Systems [in Russian], M., Fizmatgiz, 1960, 193 p. Ya. G. Panovko, Internal Friction in Vibration of Elastic Systems [in Russian], M., Fizmatgiz, 1960, 193 p.
6.
Zurück zum Zitat G. S. Pisarenko, Vibrations of Mechanical Systems in View of Imperfect Elasticity of Material [in Russian], Kiev, Naukova Dumka, 1970, 377 p. G. S. Pisarenko, Vibrations of Mechanical Systems in View of Imperfect Elasticity of Material [in Russian], Kiev, Naukova Dumka, 1970, 377 p.
7.
Zurück zum Zitat V. S. Pоstnikov, Internal Friction in Metals [in Russian], M., Metallurgiya, 1969, 330 p. V. S. Pоstnikov, Internal Friction in Metals [in Russian], M., Metallurgiya, 1969, 330 p.
8.
Zurück zum Zitat A. P. Yakovlev, Dissipative Properties Heterogeneous Materials and Systems [in Russian], Kiev, Naukova Dumka, 1985, 248 p. A. P. Yakovlev, Dissipative Properties Heterogeneous Materials and Systems [in Russian], Kiev, Naukova Dumka, 1985, 248 p.
9.
Zurück zum Zitat Yu. I. Dimitrienko, E. A. Gubarev, N. N. Fedonyuk, and D. O. Yakovlev, “Calculation method of energy dissipation in structures from hybrid composites,” Izv. Vuzov, Mashinostroenie, No. 11, 12-21 (2014). Yu. I. Dimitrienko, E. A. Gubarev, N. N. Fedonyuk, and D. O. Yakovlev, “Calculation method of energy dissipation in structures from hybrid composites,” Izv. Vuzov, Mashinostroenie, No. 11, 12-21 (2014).
10.
Zurück zum Zitat A. A. Smerdov, “Energy dissipation in vibrations of composite shells,” Inzh. Zhurn. Nauka, Inovatsii,” Iss. 7 (2013). URL: http: //engjournal.ru/catalog/machin/rocet/858.html (reference date: 06.03.2017). A. A. Smerdov, “Energy dissipation in vibrations of composite shells,” Inzh. Zhurn. Nauka, Inovatsii,” Iss. 7 (2013). URL: http: //engjournal.ru/catalog/machin/rocet/858.html (reference date: 06.03.2017).
12.
Zurück zum Zitat A. N. Danilin, E. L. Kuznetsova, and L. N. Rabinskii, “Hysteresis model of energy dissipation in vibrations of mechanical systems,” Vest PNIPU, Mrkhanika, No. 4, 45-67 (2014). A. N. Danilin, E. L. Kuznetsova, and L. N. Rabinskii, “Hysteresis model of energy dissipation in vibrations of mechanical systems,” Vest PNIPU, Mrkhanika, No. 4, 45-67 (2014).
13.
Zurück zum Zitat N. N. Panasenko, V. V. Rabei, and L. S. Sinel’shchikova,” Finite-element model of damping of load-carrying metal structures of cargo cranes,” Vest. Astrackhan Gos Tekhn. Univ., No. 2, 41-49 (2013). N. N. Panasenko, V. V. Rabei, and L. S. Sinel’shchikova,” Finite-element model of damping of load-carrying metal structures of cargo cranes,” Vest. Astrackhan Gos Tekhn. Univ., No. 2, 41-49 (2013).
14.
Zurück zum Zitat S. A. Vorob’ev, “Dinamic damping of a cylindrical sandwich shell with account of damping properties of layer material,” Dinamich. Tekhnol.Orobl. Mekh. Konstr. Sploshn. Sred. Materials of a Gorshkow XX Intern. Conference, February, 17-21, 2014, M.,Izd. OOO “ТР-print,” 44-45 (2014). S. A. Vorob’ev, “Dinamic damping of a cylindrical sandwich shell with account of damping properties of layer material,” Dinamich. Tekhnol.Orobl. Mekh. Konstr. Sploshn. Sred. Materials of a Gorshkow XX Intern. Conference, February, 17-21, 2014, M.,Izd. OOO “ТР-print,” 44-45 (2014).
15.
Zurück zum Zitat J. M. Berthelot, “Damping analysis of orthotropic composites with interleaved viscoelastic layers: modeling,” J. Compos. Mater., 40, No. 21, 1889-1909 (2006).CrossRef J. M. Berthelot, “Damping analysis of orthotropic composites with interleaved viscoelastic layers: modeling,” J. Compos. Mater., 40, No. 21, 1889-1909 (2006).CrossRef
16.
Zurück zum Zitat J. M. Berthelot, M. Assarar, Y. Sefrani, and A. E. Mahi, “Damping analysis of composite materials and structures,” Compos. Struct.,. 85, No. 3, 189-204 (2008).CrossRef J. M. Berthelot, M. Assarar, Y. Sefrani, and A. E. Mahi, “Damping analysis of composite materials and structures,” Compos. Struct.,. 85, No. 3, 189-204 (2008).CrossRef
17.
Zurück zum Zitat Y. Chen and R. F. Gibson, “Analytical and experimental studies of composite isogrid structures with integral passive damping,” Mech. Adv. Mater. Struct., 10, No. 2, 123-143 (2003).CrossRef Y. Chen and R. F. Gibson, “Analytical and experimental studies of composite isogrid structures with integral passive damping,” Mech. Adv. Mater. Struct., 10, No. 2, 123-143 (2003).CrossRef
18.
Zurück zum Zitat V. N. Paimushin, V. A. Firsov, I. Gyunal, and A. G. Egorov, “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 1. Experimental basis,” Mech. Compos. Mater., 50, No. 2, 127-136 (2014).CrossRef V. N. Paimushin, V. A. Firsov, I. Gyunal, and A. G. Egorov, “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 1. Experimental basis,” Mech. Compos. Mater., 50, No. 2, 127-136 (2014).CrossRef
19.
Zurück zum Zitat V. N. Paimushin, V. A. Firsov, I. Gyunal, A. G. Egorov, and R. A. Kayumov, “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 3. Identification of the characteristics of internal damping,” Mech. Compos. Mater., 50, No. 5, 633-646 (2014).CrossRef V. N. Paimushin, V. A. Firsov, I. Gyunal, A. G. Egorov, and R. A. Kayumov, “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 3. Identification of the characteristics of internal damping,” Mech. Compos. Mater., 50, No. 5, 633-646 (2014).CrossRef
20.
Zurück zum Zitat V. N. Paimushin, V. A. Firsov, I. Gyunal, and V. M. Shishkin, “Identification of the elasticity and damping characteristics of a fiberglass based on a study of dying flexural vibrations of test specimens,” Mech. Compos. Mater., 51, No. 3, 285-300 (2015).CrossRef V. N. Paimushin, V. A. Firsov, I. Gyunal, and V. M. Shishkin, “Identification of the elasticity and damping characteristics of a fiberglass based on a study of dying flexural vibrations of test specimens,” Mech. Compos. Mater., 51, No. 3, 285-300 (2015).CrossRef
21.
Zurück zum Zitat V. N. Paimushin, V. A. Firsov, I. Gyunal, and V. M. Shishkin, “development of an improved technique for identification of the damping properties orthogonally reinforced composites in shear,” Mech. Compos. Mater., 52, No. 2, 133-142 (2016).CrossRef V. N. Paimushin, V. A. Firsov, I. Gyunal, and V. M. Shishkin, “development of an improved technique for identification of the damping properties orthogonally reinforced composites in shear,” Mech. Compos. Mater., 52, No. 2, 133-142 (2016).CrossRef
22.
Zurück zum Zitat V. N. Paimushin, V. A. Firsov, I. Gyunal, and V. M. Shishkin, “Identification of the elastic and damping characteristics of soft materials based on the analysis of damped flexural vibrations of test specimens,” // Mech. Compos. Mater., 52, No. 4, 435-454 (2016).CrossRef V. N. Paimushin, V. A. Firsov, I. Gyunal, and V. M. Shishkin, “Identification of the elastic and damping characteristics of soft materials based on the analysis of damped flexural vibrations of test specimens,” // Mech. Compos. Mater., 52, No. 4, 435-454 (2016).CrossRef
23.
Zurück zum Zitat A. G. Egorov, A. M. Kamalutdinov, A. N. Nuriev, and V. N. Paimushin “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 2. Aerodynamic component of damping,” Mech. Compos. Mater., 50, No. 3, 267-278 (2014).CrossRef A. G. Egorov, A. M. Kamalutdinov, A. N. Nuriev, and V. N. Paimushin “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 2. Aerodynamic component of damping,” Mech. Compos. Mater., 50, No. 3, 267-278 (2014).CrossRef
24.
Zurück zum Zitat A. G. Egorov, A. M. Kamalutdinov, V. N. Paimushin, and V. A. Firsov, “Theoretical-eksperimental method for determining the factor of aerodynamic resistance of a harmonically vibrating thin plate,” Appl. Mech. Techn. Phys., 57, No. 2, 96-104 (2016).CrossRef A. G. Egorov, A. M. Kamalutdinov, V. N. Paimushin, and V. A. Firsov, “Theoretical-eksperimental method for determining the factor of aerodynamic resistance of a harmonically vibrating thin plate,” Appl. Mech. Techn. Phys., 57, No. 2, 96-104 (2016).CrossRef
25.
Zurück zum Zitat T. Sarpkaya, “Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter numbers,” J. of Fluid Mechanics, 165, 61-71 (1986).CrossRef T. Sarpkaya, “Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter numbers,” J. of Fluid Mechanics, 165, 61-71 (1986).CrossRef
26.
Zurück zum Zitat G. H. Keulegan and L. H. Carpenter, “Forces on cylinders and plates in an oscillating fluid,” J. of Research of National Bureau of Standards, 60, No. 5, 423-440 (1958).CrossRef G. H. Keulegan and L. H. Carpenter, “Forces on cylinders and plates in an oscillating fluid,” J. of Research of National Bureau of Standards, 60, No. 5, 423-440 (1958).CrossRef
27.
Zurück zum Zitat T. Shup, Solution of Engineering Problems on Digital Computers [in Russian], M., Mir, 1982, 238 p. T. Shup, Solution of Engineering Problems on Digital Computers [in Russian], M., Mir, 1982, 238 p.
28.
Zurück zum Zitat V. V. Khil’chevskii and V. G. Dubenets, Energy Dissipation in Vibrations of Structural Elements [in Russian], Kiev, Vishcha Shkola, 1977, 252 p. V. V. Khil’chevskii and V. G. Dubenets, Energy Dissipation in Vibrations of Structural Elements [in Russian], Kiev, Vishcha Shkola, 1977, 252 p.
29.
Zurück zum Zitat V. N. Paimushin, V. A. Firsov, I. Gyunal, and V. M. Shishkin, “Identification of the elastic damping characteristics of a CFRPа by investigating the damped vibrations of tests samples,” Prikl. Mekh. Tekhn. Fiz., 57, No. 4, 170-181 (2016). V. N. Paimushin, V. A. Firsov, I. Gyunal, and V. M. Shishkin, “Identification of the elastic damping characteristics of a CFRPа by investigating the damped vibrations of tests samples,” Prikl. Mekh. Tekhn. Fiz., 57, No. 4, 170-181 (2016).
30.
Zurück zum Zitat J. E. Sader, “Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope,” J. of Appl. Phys., 84, No. 1, 64-76 (1998).CrossRef J. E. Sader, “Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope,” J. of Appl. Phys., 84, No. 1, 64-76 (1998).CrossRef
31.
Zurück zum Zitat M. Aureli and M. Porfiri, “Low-frequency and large-amplitude oscillations of cantilevers in viscous fluids,” Appl. Phys. Lett., 96, 64102 (2010).CrossRef M. Aureli and M. Porfiri, “Low-frequency and large-amplitude oscillations of cantilevers in viscous fluids,” Appl. Phys. Lett., 96, 64102 (2010).CrossRef
32.
Zurück zum Zitat J. H. Matheus and K. D. Fink, Numerilal Methods: Using MATLAB [Russian translation], M., Izd Dom Vilyams,” 2001. J. H. Matheus and K. D. Fink, Numerilal Methods: Using MATLAB [Russian translation], M., Izd Dom Vilyams,” 2001.
33.
Zurück zum Zitat R. W Clough and J. Penzen, Dynamics of Structures [Russian translation], M., Stroiizdat, 1979. R. W Clough and J. Penzen, Dynamics of Structures [Russian translation], M., Stroiizdat, 1979.
34.
Zurück zum Zitat A. R. Mitchel and R. Wait, The Finite Element Method in Partial Differential Equations [Russian translation], M., Mir, 1981. A. R. Mitchel and R. Wait, The Finite Element Method in Partial Differential Equations [Russian translation], M., Mir, 1981.
Metadaten
Titel
Modeling the Dynamic Response of a Carbon-Fiber-Reinforced Plate at Resonant Vibrations Considering the Internal Friction in the Material and the External Aerodynamic Damping
verfasst von
V. N. Paimushin
V. A. Firsov
V. M. Shishkin
Publikationsdatum
05.09.2017
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 4/2017
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-017-9673-9

Weitere Artikel der Ausgabe 4/2017

Mechanics of Composite Materials 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.