Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2020

06.01.2020 | Original Research

Modeling the effects of insects and insecticides on agricultural crops with NSFD method

verfasst von: A. K. Misra, Navnit Jha, Rahul Patel

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Worldwide, agricultural crops are vulnerable to insects. During the crop season, insects target plants especially leaves for food and thus harm the agricultural crops. This reduces agricultural production and therefore effects the economy of farmers. To overcome this problem, nowadays farmers spray insecticides on crops to reduce the density of insects. In this paper, a nonlinear mathematical model is formulated to assess the impacts of insecticides on insects and crop production. In the modeling process, it is presumed that the agricultural crops grow logistically and the growth rate of the insect population wholly depends on the agricultural crops. As the excess use of insecticides on crops is harmful to agricultural farms and human health, therefore we have made an assumption that the spray rate of insecticides to kill insects is proportional to the density of insects. The feasibility of all the possible equilibria is shown and their stability properties are discussed. Keeping in mind the nonlinearity of the formulated model and different time scales of the participating variables, we have constructed a non-standard finite difference scheme by discretizing the system. It is shown that the proposed numerical scheme is convergent with second-order accuracy. Numerical simulation by using our computational scheme has been also presented to support the analytical findings. Using the approach of global sensitivity analysis, we have identified the key parameters for the formulation of effective control strategies necessary to combat the insect population and increase the crop production. Our findings suggest that to gain the desired crop production, the rate of spraying and the quality of insecticides are much important.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shiva, V.: The Violence of the Green Revolution: Third World Agriculture, Ecology, and Politics. University Press of Kentucky, Lexington (2016) Shiva, V.: The Violence of the Green Revolution: Third World Agriculture, Ecology, and Politics. University Press of Kentucky, Lexington (2016)
2.
Zurück zum Zitat Stern, V.M., Smith, R.F., Bosch, R.V.D., Hagen, K.S.: The integrated control concept. Hilgardia 29, 81–93 (1959)CrossRef Stern, V.M., Smith, R.F., Bosch, R.V.D., Hagen, K.S.: The integrated control concept. Hilgardia 29, 81–93 (1959)CrossRef
3.
Zurück zum Zitat Basir, F.A., Blyuss, K.B., Ray, S.: Modelling the effects of awareness-based interventions to control the mosaic disease of Jatropha curcas. Ecol. Complex. 36, 92100 (2018)CrossRef Basir, F.A., Blyuss, K.B., Ray, S.: Modelling the effects of awareness-based interventions to control the mosaic disease of Jatropha curcas. Ecol. Complex. 36, 92100 (2018)CrossRef
4.
Zurück zum Zitat Roy, P.K., Li, X.Z., Basir, F.A., Datta, A., Chowdhury, J.: Effect of insecticide spraying on Jatropha curcas plant to control mosaic virus: a mathematical study. Commun. Math. Biol. Neurosci. 36, 2015 (2015) Roy, P.K., Li, X.Z., Basir, F.A., Datta, A., Chowdhury, J.: Effect of insecticide spraying on Jatropha curcas plant to control mosaic virus: a mathematical study. Commun. Math. Biol. Neurosci. 36, 2015 (2015)
5.
Zurück zum Zitat Xiang, Z., Tang, S., Xiang, C., Wu, J.: On impulsive pest control using integrated intervention strategies. Appl. Math. Comput. 269, 930–946 (2015)MathSciNetMATH Xiang, Z., Tang, S., Xiang, C., Wu, J.: On impulsive pest control using integrated intervention strategies. Appl. Math. Comput. 269, 930–946 (2015)MathSciNetMATH
6.
Zurück zum Zitat Basir, F.A., Roy, P.K.: Dynamics of mosaic disease with roguing and delay in Jatropha curcas plantations. J. Appl. Math. Comput. 58, 1–31 (2018)MathSciNetCrossRef Basir, F.A., Roy, P.K.: Dynamics of mosaic disease with roguing and delay in Jatropha curcas plantations. J. Appl. Math. Comput. 58, 1–31 (2018)MathSciNetCrossRef
7.
Zurück zum Zitat Shankar, C., Dhyani, S.K.: Insect Pest of Jatropha curcas L. and the potential for their management. Curr. Sci. 91, 162–163 (2006) Shankar, C., Dhyani, S.K.: Insect Pest of Jatropha curcas L. and the potential for their management. Curr. Sci. 91, 162–163 (2006)
8.
Zurück zum Zitat Sun, S., Chen, L.: Mathematical modelling to control a pest population by infected pests. Appl. Math. Model. 33, 2864–2873 (2009)MathSciNetCrossRef Sun, S., Chen, L.: Mathematical modelling to control a pest population by infected pests. Appl. Math. Model. 33, 2864–2873 (2009)MathSciNetCrossRef
9.
Zurück zum Zitat Xiao, Y.N., Chen, L.S.: Modeling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)MathSciNetCrossRef Xiao, Y.N., Chen, L.S.: Modeling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)MathSciNetCrossRef
10.
Zurück zum Zitat Tang, S., Cheke, R.A.: State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol. 50, 257–292 (2005)MathSciNetCrossRef Tang, S., Cheke, R.A.: State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol. 50, 257–292 (2005)MathSciNetCrossRef
11.
Zurück zum Zitat Wang, X., Tao, Y., Song, X.: Analysis of pest-epidemic model by releasing diseased pest with impulsive transmission. Nonlinear Dyn. 65, 175–185 (2011)MathSciNetCrossRef Wang, X., Tao, Y., Song, X.: Analysis of pest-epidemic model by releasing diseased pest with impulsive transmission. Nonlinear Dyn. 65, 175–185 (2011)MathSciNetCrossRef
12.
Zurück zum Zitat Wang, T., Wang, Y., Liu, F.: Dynamical analysis of a new microbial pesticide model with the Monod growth rate. J. Appl. Math. Comput. 54, 325–355 (2017)MathSciNetCrossRef Wang, T., Wang, Y., Liu, F.: Dynamical analysis of a new microbial pesticide model with the Monod growth rate. J. Appl. Math. Comput. 54, 325–355 (2017)MathSciNetCrossRef
13.
Zurück zum Zitat Mickens, R.E.: Discretizations of nonlinear differential equations using explicit nonstandard methods. J. Comput. Appl. Math. 110, 181–185 (1999)MathSciNetCrossRef Mickens, R.E.: Discretizations of nonlinear differential equations using explicit nonstandard methods. J. Comput. Appl. Math. 110, 181–185 (1999)MathSciNetCrossRef
14.
Zurück zum Zitat Guerrero, F., Parra, G.G., Arenas, A.J.: A nonstandard finite difference numerical scheme applied to a mathematical model of the prevalence of smoking in Spain: a case study. Comput. Appl. Math. 33, 1–13 (2013)MathSciNet Guerrero, F., Parra, G.G., Arenas, A.J.: A nonstandard finite difference numerical scheme applied to a mathematical model of the prevalence of smoking in Spain: a case study. Comput. Appl. Math. 33, 1–13 (2013)MathSciNet
15.
Zurück zum Zitat Anguelov, R., Lubuma, J.M.S.: Contributions to the mathematics of the nonstandard finite difference method and applications. Numer. Methods Partial Differ. Equ. 17, 518–543 (2001)MathSciNetCrossRef Anguelov, R., Lubuma, J.M.S.: Contributions to the mathematics of the nonstandard finite difference method and applications. Numer. Methods Partial Differ. Equ. 17, 518–543 (2001)MathSciNetCrossRef
16.
Zurück zum Zitat Mickens, R.E.: Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 11, 645–653 (2005)MathSciNetCrossRef Mickens, R.E.: Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 11, 645–653 (2005)MathSciNetCrossRef
17.
Zurück zum Zitat Moghadas, S.M., Alexander, M.E., Corbett, B.D.: A non-standard numerical scheme for a generalized Gause-type predator–prey model. Physica D 188, 134–151 (2004)MathSciNetCrossRef Moghadas, S.M., Alexander, M.E., Corbett, B.D.: A non-standard numerical scheme for a generalized Gause-type predator–prey model. Physica D 188, 134–151 (2004)MathSciNetCrossRef
18.
Zurück zum Zitat Liao, S., Yang, W.: A nonstandard finite difference method applied to a mathematical cholera model. Bull. Korean Math. Soc. 54(6), 1893–1912 (2017)MathSciNetMATH Liao, S., Yang, W.: A nonstandard finite difference method applied to a mathematical cholera model. Bull. Korean Math. Soc. 54(6), 1893–1912 (2017)MathSciNetMATH
19.
Zurück zum Zitat Upadhyay, R.K., Kumari, S., Misra, A.K.: Modeling the virus dynamics in computer network with SVEIR model and nonlinear incident rate. J. Appl. Math. Comput. 54, 485–509 (2016)MathSciNetCrossRef Upadhyay, R.K., Kumari, S., Misra, A.K.: Modeling the virus dynamics in computer network with SVEIR model and nonlinear incident rate. J. Appl. Math. Comput. 54, 485–509 (2016)MathSciNetCrossRef
20.
Zurück zum Zitat Freedman, H.I., So, J.W.H.: Global stability and persistence of simple food chains. Math. Biosci. 76, 69–86 (1985)MathSciNetCrossRef Freedman, H.I., So, J.W.H.: Global stability and persistence of simple food chains. Math. Biosci. 76, 69–86 (1985)MathSciNetCrossRef
21.
Zurück zum Zitat Hale, J.K.: Ordinary Differential Equations. Wiley, New York (1969)MATH Hale, J.K.: Ordinary Differential Equations. Wiley, New York (1969)MATH
22.
Zurück zum Zitat Mickens, R.E.: Applications of nonstandard finite difference schemes. World Scientific, Singapore (2000)CrossRef Mickens, R.E.: Applications of nonstandard finite difference schemes. World Scientific, Singapore (2000)CrossRef
23.
Zurück zum Zitat LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, Philadelphia (2007)CrossRef LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, Philadelphia (2007)CrossRef
24.
Zurück zum Zitat Basir, F.A., Banerjee, A., Ray, S.: Role of farming awareness in crop pest management—a mathematical model. J. Theor. Biol. 461, 59–67 (2019)MathSciNetCrossRef Basir, F.A., Banerjee, A., Ray, S.: Role of farming awareness in crop pest management—a mathematical model. J. Theor. Biol. 461, 59–67 (2019)MathSciNetCrossRef
25.
Zurück zum Zitat Blower, S.M., Dowlatabadi, M.: Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 62, 229–243 (1994)CrossRef Blower, S.M., Dowlatabadi, M.: Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 62, 229–243 (1994)CrossRef
26.
Zurück zum Zitat Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196 (2008)MathSciNetCrossRef Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196 (2008)MathSciNetCrossRef
27.
Zurück zum Zitat Tiwari, P.K., Bulai, I.M., Bona, F., Venturino, E., Misra, A.K.: Human population effects on the Ulsoor lake fish survival. J. Biol. Syst. 26(4), 603–632 (2018)MathSciNetCrossRef Tiwari, P.K., Bulai, I.M., Bona, F., Venturino, E., Misra, A.K.: Human population effects on the Ulsoor lake fish survival. J. Biol. Syst. 26(4), 603–632 (2018)MathSciNetCrossRef
Metadaten
Titel
Modeling the effects of insects and insecticides on agricultural crops with NSFD method
verfasst von
A. K. Misra
Navnit Jha
Rahul Patel
Publikationsdatum
06.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2020
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-019-01314-6

Weitere Artikel der Ausgabe 1-2/2020

Journal of Applied Mathematics and Computing 1-2/2020 Zur Ausgabe