Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2014

01.03.2014

Modeling the High Temperature Flow Behavior and Dynamic Recrystallization Kinetics of a Medium Carbon Microalloyed Steel

verfasst von: Mahmoud Reza Ghandehari Ferdowsi, Davood Nakhaie, Pooya Hosseini Benhangi, Gholam Reza Ebrahimi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the hot deformation behavior of a medium carbon microalloyed steel was investigated. The hot compression test was conducted in the temperature range of 1000-1200 °C under strain rates of 0.01, 0.1 and 1 s−1. It has been observed that the flow stress increases with a decrease in temperature and/or an increase in strain rate. Furthermore, dynamic recrystallization (DRX) is found to be the main flow softening mechanism in almost all deformation conditions. Material parameters of the constitutive equations are found to be strain dependent. Their relationship with strain is identified by a fourth order polynomial fit. Then, a constitutive model is developed to predict the flow stress of the material incorporating the strain softening effect. The accuracy of the proposed model for the flow stress is evaluated by applying the absolute average error method. The result of 6.08% indicates a good agreement between predicted and experimental data. Moreover, the critical characteristics of DRX are extracted from the stress-strain curves at different deformation conditions. It is found that by increasing the strain rate at a constant temperature or decreasing deformation temperature under a constant strain rate, the recrystallization curve shifts to the higher strains. The kinetics of DRX increases with increasing deformation temperature or strain rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.H. Bok, M.G. Lee, H.D. Kim, and M.B. Moon, Thermo-Mechanical Finite Element Analysis Incorporating the Temperature Dependent Stress-Strain Response of Low Alloy Steel for Practical Application to the Hot Stamped Part, Met. Mater. Int., 2010, 16, p 185–195CrossRef H.H. Bok, M.G. Lee, H.D. Kim, and M.B. Moon, Thermo-Mechanical Finite Element Analysis Incorporating the Temperature Dependent Stress-Strain Response of Low Alloy Steel for Practical Application to the Hot Stamped Part, Met. Mater. Int., 2010, 16, p 185–195CrossRef
2.
Zurück zum Zitat M.A. Bonte, L. Fourment, T.T. Do, A.H. Boogaard, and J. Huétink, Optimization of Forging Processes Using Finite Element Simulations, Struct. Multidiscip. Optim., 2010, 42, p 797–810CrossRef M.A. Bonte, L. Fourment, T.T. Do, A.H. Boogaard, and J. Huétink, Optimization of Forging Processes Using Finite Element Simulations, Struct. Multidiscip. Optim., 2010, 42, p 797–810CrossRef
3.
Zurück zum Zitat A.R. Shahani, S. Setayeshi, S.A. Nodamaie, M.A. Asadi, and S. Rezaie, Prediction of Influence Parameters on the Hot Rolling Process Using Finite Element Method and Neural Network, J. Mater. Process Technol., 2009, 209, p 1920–1935CrossRef A.R. Shahani, S. Setayeshi, S.A. Nodamaie, M.A. Asadi, and S. Rezaie, Prediction of Influence Parameters on the Hot Rolling Process Using Finite Element Method and Neural Network, J. Mater. Process Technol., 2009, 209, p 1920–1935CrossRef
4.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42, p 470–477CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42, p 470–477CrossRef
5.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef
6.
Zurück zum Zitat C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metal., 1966, 14, p 1136–1138CrossRef C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metal., 1966, 14, p 1136–1138CrossRef
7.
Zurück zum Zitat L.X. Li, Y. Lou, L.B. Yang, D.S. Peng, and K.P. Rao, Flow Stress Behavior and Deformation Characteristics of Ti-3Al-5V-5Mo Compressed at Elevated Temperatures, Mater. Des., 2002, 23, p 451–457CrossRef L.X. Li, Y. Lou, L.B. Yang, D.S. Peng, and K.P. Rao, Flow Stress Behavior and Deformation Characteristics of Ti-3Al-5V-5Mo Compressed at Elevated Temperatures, Mater. Des., 2002, 23, p 451–457CrossRef
8.
Zurück zum Zitat A. Momeni, H. Arabi, A. Rezaei, H. Badri, and S.M. Abbasi, Hot Deformation Behavior of Austenite in HSLA-100 Microalloyed Steel, Mater. Sci. Eng. A, 2011, 528, p 2158–2163CrossRef A. Momeni, H. Arabi, A. Rezaei, H. Badri, and S.M. Abbasi, Hot Deformation Behavior of Austenite in HSLA-100 Microalloyed Steel, Mater. Sci. Eng. A, 2011, 528, p 2158–2163CrossRef
9.
Zurück zum Zitat K.P. Rao, Y.K.D.V. Prasad, and E.B. Hawbolt, Hot Deformation Studies on a Low-Carbon Steel: Part 1—Flow Curves and the Constitutive Relationship, J. Mater. Process Technol., 1996, 56, p 897–907CrossRef K.P. Rao, Y.K.D.V. Prasad, and E.B. Hawbolt, Hot Deformation Studies on a Low-Carbon Steel: Part 1—Flow Curves and the Constitutive Relationship, J. Mater. Process Technol., 1996, 56, p 897–907CrossRef
10.
Zurück zum Zitat J. Cai, F. Li, T. Liu, B. Chen, and M. He, Constitutive Equations for Elevated Temperature Flow Stress of Ti-6Al-4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–1151CrossRef J. Cai, F. Li, T. Liu, B. Chen, and M. He, Constitutive Equations for Elevated Temperature Flow Stress of Ti-6Al-4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–1151CrossRef
11.
Zurück zum Zitat P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389CrossRef P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389CrossRef
12.
Zurück zum Zitat Y. Han, G. Qiao, Y. Sun, and D. Zou, Modeling the Constitutive Relationship of Cr20Ni25Mo4Cu Superaustenitic Stainless Steel During Elevated Temperature, Mater. Sci. Eng. A, 2012, 539, p 61–67CrossRef Y. Han, G. Qiao, Y. Sun, and D. Zou, Modeling the Constitutive Relationship of Cr20Ni25Mo4Cu Superaustenitic Stainless Steel During Elevated Temperature, Mater. Sci. Eng. A, 2012, 539, p 61–67CrossRef
13.
Zurück zum Zitat S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500, p 114–121CrossRef S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500, p 114–121CrossRef
14.
Zurück zum Zitat G.R. Stewart, A.M. Elwazri, S. Yue, and J.J. Jonas, Modelling of Dynamic Recrystallisation Kinetics in Austenitic Stainless and Hypereutectoid Steels, Mater. Sci. Technol., 2006, 22, p 519–524CrossRef G.R. Stewart, A.M. Elwazri, S. Yue, and J.J. Jonas, Modelling of Dynamic Recrystallisation Kinetics in Austenitic Stainless and Hypereutectoid Steels, Mater. Sci. Technol., 2006, 22, p 519–524CrossRef
15.
Zurück zum Zitat J.H. Bianchi and L.P. Karjalainen, Modelling of Dynamic and Metadynamic Recrystallisation During Bar Rolling of a Medium Carbon Spring Steel, J. Mater. Process. Technol., 2005, 160, p 267–277CrossRef J.H. Bianchi and L.P. Karjalainen, Modelling of Dynamic and Metadynamic Recrystallisation During Bar Rolling of a Medium Carbon Spring Steel, J. Mater. Process. Technol., 2005, 160, p 267–277CrossRef
16.
Zurück zum Zitat S.I. Kim, Y. Lee, and S.M. Byon, Study on Constitutive Relation of AISI, 4140 Steel Subject to Large Strain at Elevated Temperatures, J. Mater. Process. Technol., 2003, 140, p 84–89CrossRef S.I. Kim, Y. Lee, and S.M. Byon, Study on Constitutive Relation of AISI, 4140 Steel Subject to Large Strain at Elevated Temperatures, J. Mater. Process. Technol., 2003, 140, p 84–89CrossRef
17.
Zurück zum Zitat A. Momeni, S.M. Abbasi, and H. Badri, Hot Deformation Behavior and Constitutive Modeling of VCN200 Low Alloy Steel, Appl. Math. Model., 2012, 36, p 5624–5632CrossRef A. Momeni, S.M. Abbasi, and H. Badri, Hot Deformation Behavior and Constitutive Modeling of VCN200 Low Alloy Steel, Appl. Math. Model., 2012, 36, p 5624–5632CrossRef
18.
Zurück zum Zitat A. Momeni, K. Dehghani, H. Keshmiri, and G.R. Ebrahimi, Hot Deformation Behavior and Microstructural Evolution of a Superaustenitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527, p 1605–1611CrossRef A. Momeni, K. Dehghani, H. Keshmiri, and G.R. Ebrahimi, Hot Deformation Behavior and Microstructural Evolution of a Superaustenitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527, p 1605–1611CrossRef
19.
Zurück zum Zitat H. Mirzadeh and A. Najafizadeh, Prediction of the Critical Conditions for Initiation of Dynamic Recrystallization, Mater. Des., 2010, 31, p 1174–1179CrossRef H. Mirzadeh and A. Najafizadeh, Prediction of the Critical Conditions for Initiation of Dynamic Recrystallization, Mater. Des., 2010, 31, p 1174–1179CrossRef
20.
Zurück zum Zitat Y. Xu, D. Tang, Y. Song, and X. Pan, Dynamic Recrystallization Kinetics Model of X70 Pipeline Steel, Mater. Des., 2012, 39, p 168–174CrossRef Y. Xu, D. Tang, Y. Song, and X. Pan, Dynamic Recrystallization Kinetics Model of X70 Pipeline Steel, Mater. Des., 2012, 39, p 168–174CrossRef
21.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136CrossRef E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136CrossRef
22.
Zurück zum Zitat X.G. Fan, H. Yang, Z.C. Sun, and D.W. Zhang, Quantitative Analysis of Dynamic Recrystallization Behavior Using a Grain Boundary Evolution Based Kinetic Model, Mater. Sci. Eng. A, 2010, 527, p 5368–5377CrossRef X.G. Fan, H. Yang, Z.C. Sun, and D.W. Zhang, Quantitative Analysis of Dynamic Recrystallization Behavior Using a Grain Boundary Evolution Based Kinetic Model, Mater. Sci. Eng. A, 2010, 527, p 5368–5377CrossRef
23.
Zurück zum Zitat A. Momeni, K. Dehghani, and G.R. Ebrahimi, Modeling the Initiation of Dynamic Recrystallization Using a Dynamic Recovery Model, J. Alloy Compd., 2011, 509, p 9387–9393CrossRef A. Momeni, K. Dehghani, and G.R. Ebrahimi, Modeling the Initiation of Dynamic Recrystallization Using a Dynamic Recovery Model, J. Alloy Compd., 2011, 509, p 9387–9393CrossRef
24.
Zurück zum Zitat A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46, p 1679–1684CrossRef A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46, p 1679–1684CrossRef
25.
Zurück zum Zitat J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57, p 2748–2756CrossRef J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57, p 2748–2756CrossRef
26.
Zurück zum Zitat H.J. McQueen, Development of Dynamic Recrystallization Theory, Mater. Sci. Eng. A, 2004, 387-389, p 203–208CrossRef H.J. McQueen, Development of Dynamic Recrystallization Theory, Mater. Sci. Eng. A, 2004, 387-389, p 203–208CrossRef
27.
Zurück zum Zitat H. Mirzadeh and A. Najafizadeh, The Rate of Dynamic Recrystallization in 17-4 PH Stainless Steel, Mater. Des., 2010, 31, p 4577–4583CrossRef H. Mirzadeh and A. Najafizadeh, The Rate of Dynamic Recrystallization in 17-4 PH Stainless Steel, Mater. Des., 2010, 31, p 4577–4583CrossRef
28.
Zurück zum Zitat ASTM International E209, Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates. Annual Book of ASTM Standards, Vol 03.01, 2010 ASTM International E209, Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates. Annual Book of ASTM Standards, Vol 03.01, 2010
29.
Zurück zum Zitat I. Tamura, Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworths, London, 1988 I. Tamura, Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworths, London, 1988
30.
Zurück zum Zitat A.M. Elwazri, P. Wanjara, and S. Yue, Dynamic Recrystallization of Austenite in Microalloyed High Carbon Steels, Mater. Sci. Eng. A, 2003, 339, p 209–215CrossRef A.M. Elwazri, P. Wanjara, and S. Yue, Dynamic Recrystallization of Austenite in Microalloyed High Carbon Steels, Mater. Sci. Eng. A, 2003, 339, p 209–215CrossRef
31.
Zurück zum Zitat D. Nakhaie, P. Hosseini Benhangi, F. Fazeli, M. Mazinani, E. Zohourvahid Karimi, M.R. Ghandehari Ferdowsi, Controlled Forging of a Nb Containing Microalloyed Steel for Automotive Applications, Metal. Mater. Trans. A, 2012, 43, 5209–5217 D. Nakhaie, P. Hosseini Benhangi, F. Fazeli, M. Mazinani, E. Zohourvahid Karimi, M.R. Ghandehari Ferdowsi, Controlled Forging of a Nb Containing Microalloyed Steel for Automotive Applications, Metal. Mater. Trans. A, 2012, 43, 5209–5217
32.
Zurück zum Zitat M. Shaban and B. Eghbali, Determination of Critical Conditions for Dynamic Recrystallization of a Microalloyed Steel, Mater. Sci. Eng. A, 2010, 527, p 4320–4325CrossRef M. Shaban and B. Eghbali, Determination of Critical Conditions for Dynamic Recrystallization of a Microalloyed Steel, Mater. Sci. Eng. A, 2010, 527, p 4320–4325CrossRef
33.
Zurück zum Zitat T. Sakai, M.G. Akben, and J.J. Jonas, Dynamic Recrystallization During the Transient Deformation of a Vanadium Microalloyed Steel, Acta Metall., 1983, 31, p 631–641CrossRef T. Sakai, M.G. Akben, and J.J. Jonas, Dynamic Recrystallization During the Transient Deformation of a Vanadium Microalloyed Steel, Acta Metall., 1983, 31, p 631–641CrossRef
34.
Zurück zum Zitat H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63CrossRef H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63CrossRef
35.
Zurück zum Zitat E. Evangelista, M. Masini, M. El Mehtedi, and S. Spigarelli, Hot Working and Multipass Deformation of a 41Cr4 Steel, J. Alloy Compd., 2004, 378, p 151–154CrossRef E. Evangelista, M. Masini, M. El Mehtedi, and S. Spigarelli, Hot Working and Multipass Deformation of a 41Cr4 Steel, J. Alloy Compd., 2004, 378, p 151–154CrossRef
36.
Zurück zum Zitat D. Rasouli, S.K. Asl, A. Akbarzadeh, and G.H. Daneshi, Optimization of Mechanical Properties of a Micro Alloyed Steel, Mater. Des., 2009, 30, p 2167–2172CrossRef D. Rasouli, S.K. Asl, A. Akbarzadeh, and G.H. Daneshi, Optimization of Mechanical Properties of a Micro Alloyed Steel, Mater. Des., 2009, 30, p 2167–2172CrossRef
37.
Zurück zum Zitat S. Serajzadeh and A. Karimi Taheri, An Investigation on the Effect of Carbon and Silicon on Flow Behavior of Steel, Mater. Des., 2002, 23, p 271–276CrossRef S. Serajzadeh and A. Karimi Taheri, An Investigation on the Effect of Carbon and Silicon on Flow Behavior of Steel, Mater. Des., 2002, 23, p 271–276CrossRef
38.
Zurück zum Zitat S.F. Medina and C.A. Hernandez, General Expression of the Zener-Hollomon Parameter as a Function of the Chemical Composition of Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44, p 137–148CrossRef S.F. Medina and C.A. Hernandez, General Expression of the Zener-Hollomon Parameter as a Function of the Chemical Composition of Low Alloy and Microalloyed Steels, Acta Mater., 1996, 44, p 137–148CrossRef
39.
Zurück zum Zitat S.-H. Cho, K.-B. Kang, and J.J. Jonas, The Dynamic, Static and Metadynamic Recrystallization of a Nb-Microalloyed Steel, ISIJ Int., 2001, 41, p 63–69CrossRef S.-H. Cho, K.-B. Kang, and J.J. Jonas, The Dynamic, Static and Metadynamic Recrystallization of a Nb-Microalloyed Steel, ISIJ Int., 2001, 41, p 63–69CrossRef
40.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel, J. Mater. Process. Technol., 2008, 205, p 308–315CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel, J. Mater. Process. Technol., 2008, 205, p 308–315CrossRef
41.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, Critical Strain for Dynamic Recrystallization in Variable Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 692–700CrossRef E.I. Poliak and J.J. Jonas, Critical Strain for Dynamic Recrystallization in Variable Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 692–700CrossRef
42.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 684–691CrossRef E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 684–691CrossRef
43.
Zurück zum Zitat A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization, Metal. Mater. Trans. A, 2008, 39, 1359-1370 A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization, Metal. Mater. Trans. A, 2008, 39, 1359-1370
44.
Zurück zum Zitat H.L. Wei, G.Q. Liu, H.T. Zhao, and R.M. Kang, Hot Deformation Behavior of Two C-Mn-Si Based and C-Mn-Al Based Microalloyed High-Strength Steels: A Comparative Study, Mater. Des., 2013, 50, p 484–490CrossRef H.L. Wei, G.Q. Liu, H.T. Zhao, and R.M. Kang, Hot Deformation Behavior of Two C-Mn-Si Based and C-Mn-Al Based Microalloyed High-Strength Steels: A Comparative Study, Mater. Des., 2013, 50, p 484–490CrossRef
45.
Zurück zum Zitat S.I. Kim, Y. Lee, D.L. Lee, and Y.C. Yoo, Modeling of AGS and Recrystallized Fraction of Microalloyed Medium Carbon Steel During Hot Deformation, Mater. Sci. Eng. A, 2003, 355, p 384–393CrossRef S.I. Kim, Y. Lee, D.L. Lee, and Y.C. Yoo, Modeling of AGS and Recrystallized Fraction of Microalloyed Medium Carbon Steel During Hot Deformation, Mater. Sci. Eng. A, 2003, 355, p 384–393CrossRef
Metadaten
Titel
Modeling the High Temperature Flow Behavior and Dynamic Recrystallization Kinetics of a Medium Carbon Microalloyed Steel
verfasst von
Mahmoud Reza Ghandehari Ferdowsi
Davood Nakhaie
Pooya Hosseini Benhangi
Gholam Reza Ebrahimi
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2014
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-013-0815-5

Weitere Artikel der Ausgabe 3/2014

Journal of Materials Engineering and Performance 3/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.