Skip to main content

2014 | OriginalPaper | Buchkapitel

5. Modeling with Stochastic Differential Equations

verfasst von : Grigorios A. Pavliotis

Erschienen in: Stochastic Processes and Applications

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When the white noise in a stochastic differential equation is approximated by a smoother process, then in the limit as we remove the regularization, we obtain the Stratonovich stochastic equation. This is usually called the Wong–Zakai theorem. In this section, we derive the limiting Stratonovich SDE for a particular class of regularization of the white noise process using singular perturbation theory for Markov processes. In particular, we consider colored noise, which we model as a Gaussian stationary diffusion process, i.e., the Ornstein–Uhlenbeck process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
At least in one dimension; in higher dimensions, there might be an additional drift term to the Stratonovich stochastic equation; see (5.15) and (5.16).
 
2
We should also add a function ψ 1(x, t), which belongs to the null space of \(\mathcal{L}_{0}\). However, as for the one-dimensional problem, we can check that this function does not affect the limiting backward Kolmogorov equation.
 
3
For example, the Taylor expansion, which is the main tool for obtaining higher-order numerical methods for ODEs, has to be replaced by the stochastic Taylor expansion, which is based on Itô’s formula.
 
4
Maximizing the likelihood function is, of course, equivalent to maximizing the log likelihood function.
 
5
Note, however, that this trajectory is not stationary, since the initial conditions are not distributed according to the invariant distribution \(\frac{1} {Z}e^{-\beta V (x)}\). We could, in principle, sample from this distribution using the MCMC methodology that was mentioned in Sect. 4.​10.​
 
6
We have that in law,
$$\displaystyle{ \int _{0}^{T}f(s)\,dW(s) = W\left (\int _{ 0}^{T}f^{2}(s)\,ds\right ). }$$
(5.80)
Generalizations of this formula are discussed in Sect. 5.5.
 
7
This means, of course, that we are not really looking at the dynamics but only at the dependence of the stationary state on the bifurcation parameter.
 
8
Alternatively, we can show that U(x) = x 2 is a Lyapunov function; see Exercise 15.
 
9
Note that the generator of (5.99) is not uniformly elliptic, and consequently, the techniques developed in Sect. 4.​6 are not directly applicable.
 
10
In bounded domains. For evolution PDEs in unbounded domains, the amplitude equation is a also a PDE, the Ginzburg–Landau equation. See [39] for details.
 
Literatur
[9]
Zurück zum Zitat A. Athreya, T. Kolba, and J. C. Mattingly. Propagating Lyapunov functions to prove noise-induced stabilization. Electron. J. Probab., 17:no. 96, 38, 2012. A. Athreya, T. Kolba, and J. C. Mattingly. Propagating Lyapunov functions to prove noise-induced stabilization. Electron. J. Probab., 17:no. 96, 38, 2012.
[15]
Zurück zum Zitat I.V. Basawa and B.L.S. Prakasa Rao. Statistical inference for stochastic processes. Academic Press Inc., London, 1980.MATH I.V. Basawa and B.L.S. Prakasa Rao. Statistical inference for stochastic processes. Academic Press Inc., London, 1980.MATH
[16]
Zurück zum Zitat R. F. Bass, B. M. Hambly, and T. J. Lyons. Extending the Wong-Zakai theorem to reversible Markov processes. J. Eur. Math. Soc. (JEMS), 4(3): 237–269, 2002. R. F. Bass, B. M. Hambly, and T. J. Lyons. Extending the Wong-Zakai theorem to reversible Markov processes. J. Eur. Math. Soc. (JEMS), 4(3): 237–269, 2002.
[23]
Zurück zum Zitat J. P. N. Bishwal. Parameter estimation in stochastic differential equations, volume 1923 of Lecture Notes in Mathematics. Springer, Berlin, 2008. J. P. N. Bishwal. Parameter estimation in stochastic differential equations, volume 1923 of Lecture Notes in Mathematics. Springer, Berlin, 2008.
[24]
Zurück zum Zitat G. Blankenship and G.C. Papanicolaou. Stability and control of stochastic systems with wide-band noise disturbances. I. SIAM J. Appl. Math., 34(3):437–476, 1978. G. Blankenship and G.C. Papanicolaou. Stability and control of stochastic systems with wide-band noise disturbances. I. SIAM J. Appl. Math., 34(3):437–476, 1978.
[26]
Zurück zum Zitat D. Blömker, M. Hairer, and G. A. Pavliotis. Multiscale analysis for stochastic partial differential equations with quadratic nonlinearities. Nonlinearity, 20(7):1721–1744, 2007.CrossRefMATHMathSciNet D. Blömker, M. Hairer, and G. A. Pavliotis. Multiscale analysis for stochastic partial differential equations with quadratic nonlinearities. Nonlinearity, 20(7):1721–1744, 2007.CrossRefMATHMathSciNet
[27]
Zurück zum Zitat D. Blömker, S. Maier-Paape, and G. Schneider. The stochastic Landau equation as an amplitude equation. Discrete Contin. Dyn. Syst. Ser. B, 1(4):527–541, 2001.CrossRefMATHMathSciNet D. Blömker, S. Maier-Paape, and G. Schneider. The stochastic Landau equation as an amplitude equation. Discrete Contin. Dyn. Syst. Ser. B, 1(4):527–541, 2001.CrossRefMATHMathSciNet
[28]
Zurück zum Zitat K. Boďová and C. R. Doering. Noise-induced statistically stable oscillations in a deterministically divergent nonlinear dynamical system. Commun. Math. Sci., 10(1):137–157, 2012.CrossRefMATHMathSciNet K. Boďová and C. R. Doering. Noise-induced statistically stable oscillations in a deterministically divergent nonlinear dynamical system. Commun. Math. Sci., 10(1):137–157, 2012.CrossRefMATHMathSciNet
[30]
Zurück zum Zitat T. Brettschneider, G. Volpe, L. Helden, J. Wehr, and C. Bechinger. Force measurement in the presence of Brownian noise: Equilibrium-distribution method versus drift method. Phys. Rev. E, 83(4, Part 1), APR 15 2011. T. Brettschneider, G. Volpe, L. Helden, J. Wehr, and C. Bechinger. Force measurement in the presence of Brownian noise: Equilibrium-distribution method versus drift method. Phys. Rev. E, 83(4, Part 1), APR 15 2011.
[39]
Zurück zum Zitat M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65:851–1112, Jul 1993.CrossRef M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65:851–1112, Jul 1993.CrossRef
[81]
Zurück zum Zitat P. Hanggi and P. Jung. Colored noise in dynamical systems. In I. Prigogine and S. A. Rice, editors, Advances in Chemical Physics, volume 89, 239–326. 1995. P. Hanggi and P. Jung. Colored noise in dynamical systems. In I. Prigogine and S. A. Rice, editors, Advances in Chemical Physics, volume 89, 239–326. 1995.
[88]
Zurück zum Zitat D. J. Higham. Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal., 38(3):753–769 (electronic), 2000. D. J. Higham. Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal., 38(3):753–769 (electronic), 2000.
[89]
Zurück zum Zitat D. J. Higham. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev., 43(3):525–546 (electronic), 2001. D. J. Higham. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev., 43(3):525–546 (electronic), 2001.
[93]
Zurück zum Zitat W. Horsthemke and R. Lefever. Noise-induced transitions, volume 15 of Springer Series in Synergetics. Springer-Verlag, Berlin, 1984. Theory and applications in physics, chemistry, and biology. W. Horsthemke and R. Lefever. Noise-induced transitions, volume 15 of Springer Series in Synergetics. Springer-Verlag, Berlin, 1984. Theory and applications in physics, chemistry, and biology.
[94]
Zurück zum Zitat S. Hottovy, G. Volpe, and J. Wehr. Noise-Induced Drift in Stochastic Differential Equations with Arbitrary Friction and Diffusion in the Smoluchowski-Kramers Limit. J. Stat. Phys., 146(4):762–773, 2012.CrossRefMATHMathSciNet S. Hottovy, G. Volpe, and J. Wehr. Noise-Induced Drift in Stochastic Differential Equations with Arbitrary Friction and Diffusion in the Smoluchowski-Kramers Limit. J. Stat. Phys., 146(4):762–773, 2012.CrossRefMATHMathSciNet
[98]
Zurück zum Zitat N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes. North-Holland Publishing Co., Amsterdam, second edition, 1989.MATH N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes. North-Holland Publishing Co., Amsterdam, second edition, 1989.MATH
[116]
Zurück zum Zitat Y. L. Klimontovich. Ito, Stratonovich and kinetic forms of stochastic-equations. Physica A, 163(2):515–532, FEB 15 1990. Y. L. Klimontovich. Ito, Stratonovich and kinetic forms of stochastic-equations. Physica A, 163(2):515–532, FEB 15 1990.
[117]
Zurück zum Zitat P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equations, volume 23 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1992. P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equations, volume 23 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1992.
[130]
Zurück zum Zitat R. Kupferman, G. A. Pavliotis, and A. M. Stuart. Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise. Phys. Rev. E (3), 70(3):036120, 9, 2004. R. Kupferman, G. A. Pavliotis, and A. M. Stuart. Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise. Phys. Rev. E (3), 70(3):036120, 9, 2004.
[132]
Zurück zum Zitat Y. Kuramoto. Chemical oscillations, waves, and turbulence, volume 19 of Springer Series in Synergetics. Springer-Verlag, Berlin, 1984. Y. Kuramoto. Chemical oscillations, waves, and turbulence, volume 19 of Springer Series in Synergetics. Springer-Verlag, Berlin, 1984.
[133]
Zurück zum Zitat Y. A. Kutoyants. Statistical inference for ergodic diffusion processes. Springer Series in Statistics. Springer-Verlag London Ltd., London, 2004.CrossRefMATH Y. A. Kutoyants. Statistical inference for ergodic diffusion processes. Springer Series in Statistics. Springer-Verlag London Ltd., London, 2004.CrossRefMATH
[134]
Zurück zum Zitat A. Lasota and M. C. Mackey. Chaos, fractals, and noise, volume 97 of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1994. A. Lasota and M. C. Mackey. Chaos, fractals, and noise, volume 97 of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1994.
[147]
[149]
Zurück zum Zitat M. C. Mackey. Time’s arrow. Dover Publications Inc., Mineola, NY, 2003. The origins of thermodynamic behavior, Reprint of the 1992 original [Springer, New York; MR1140408]. M. C. Mackey. Time’s arrow. Dover Publications Inc., Mineola, NY, 2003. The origins of thermodynamic behavior, Reprint of the 1992 original [Springer, New York; MR1140408].
[150]
Zurück zum Zitat M. C. Mackey, A. Longtin, and A. Lasota. Noise-induced global asymptotic stability. J. Statist. Phys., 60(5–6):735–751, 1990.CrossRefMATHMathSciNet M. C. Mackey, A. Longtin, and A. Lasota. Noise-induced global asymptotic stability. J. Statist. Phys., 60(5–6):735–751, 1990.CrossRefMATHMathSciNet
[181]
Zurück zum Zitat G. A. Pavliotis and A. M. Stuart. White noise limits for inertial particles in a random field. Multiscale Model. Simul., 1(4):527–533 (electronic), 2003. G. A. Pavliotis and A. M. Stuart. White noise limits for inertial particles in a random field. Multiscale Model. Simul., 1(4):527–533 (electronic), 2003.
[182]
Zurück zum Zitat G. A. Pavliotis and A. M. Stuart. Analysis of white noise limits for stochastic systems with two fast relaxation times. Multiscale Model. Simul., 4(1):1–35 (electronic), 2005. G. A. Pavliotis and A. M. Stuart. Analysis of white noise limits for stochastic systems with two fast relaxation times. Multiscale Model. Simul., 4(1):1–35 (electronic), 2005.
[185]
Zurück zum Zitat G. A. Pavliotis and A. M. Stuart. Multiscale methods, volume 53 of Texts in Applied Mathematics. Springer, New York, 2008. Averaging and homogenization. G. A. Pavliotis and A. M. Stuart. Multiscale methods, volume 53 of Texts in Applied Mathematics. Springer, New York, 2008. Averaging and homogenization.
[189]
Zurück zum Zitat M. Pradas, D. Tseluiko, S. Kalliadasis, D. T. Papageorgiou, and G. A. Pavliotis. Noise induced state transitions, intermittency, and universality in the noisy Kuramoto-Sivashinksy equation. Phys. Rev. Lett., 106(6):060602, Feb 2011. M. Pradas, D. Tseluiko, S. Kalliadasis, D. T. Papageorgiou, and G. A. Pavliotis. Noise induced state transitions, intermittency, and universality in the noisy Kuramoto-Sivashinksy equation. Phys. Rev. Lett., 106(6):060602, Feb 2011.
[214]
Zurück zum Zitat Y. Saito and T. Mitsui. Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal., 33(6):2254–2267, 1996.CrossRefMATHMathSciNet Y. Saito and T. Mitsui. Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal., 33(6):2254–2267, 1996.CrossRefMATHMathSciNet
[221]
Zurück zum Zitat M. Sørensen. Estimating functions for diffusion-type processes. In Statistical methods for stochastic differential equations, volume 124 of Monogr. Statist. Appl. Probab., pages 1–107. CRC Press, Boca Raton, FL, 2012. M. Sørensen. Estimating functions for diffusion-type processes. In Statistical methods for stochastic differential equations, volume 124 of Monogr. Statist. Appl. Probab., pages 1–107. CRC Press, Boca Raton, FL, 2012.
[224]
Zurück zum Zitat R. L. Stratonovich. A new representation for stochastic integrals and equations. SIAM J. Control, 4:362–371, 1966.CrossRefMathSciNet R. L. Stratonovich. A new representation for stochastic integrals and equations. SIAM J. Control, 4:362–371, 1966.CrossRefMathSciNet
[229]
Zurück zum Zitat H. J. Sussmann. On the gap between deterministic and stochastic ordinary differential equations. Ann. Probability, 6(1):19–41, 1978.CrossRefMATHMathSciNet H. J. Sussmann. On the gap between deterministic and stochastic ordinary differential equations. Ann. Probability, 6(1):19–41, 1978.CrossRefMATHMathSciNet
[230]
Zurück zum Zitat H. J. Sussmann. Limits of the Wong-Zakai type with a modified drift term. In Stochastic analysis, pages 475–493. Academic Press, Boston, MA, 1991. H. J. Sussmann. Limits of the Wong-Zakai type with a modified drift term. In Stochastic analysis, pages 475–493. Academic Press, Boston, MA, 1991.
[238]
Zurück zum Zitat G. Volpe, L. Helden, T. Brettschneider, J. Wehr, and C. Bechinger. Influence of Noise on Force Measurements. Physical Review Letters, 104(17), APR 30 2010. G. Volpe, L. Helden, T. Brettschneider, J. Wehr, and C. Bechinger. Influence of Noise on Force Measurements. Physical Review Letters, 104(17), APR 30 2010.
[240]
Zurück zum Zitat E. Wong and M. Zakai. On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist., 36:1560–1564, 1965.CrossRefMATHMathSciNet E. Wong and M. Zakai. On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist., 36:1560–1564, 1965.CrossRefMATHMathSciNet
[241]
Zurück zum Zitat E. Wong and M. Zakai. Riemann-Stieltjes approximations of stochastic integrals. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 12:87–97, 1969.CrossRefMATHMathSciNet E. Wong and M. Zakai. Riemann-Stieltjes approximations of stochastic integrals. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 12:87–97, 1969.CrossRefMATHMathSciNet
Metadaten
Titel
Modeling with Stochastic Differential Equations
verfasst von
Grigorios A. Pavliotis
Copyright-Jahr
2014
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-1323-7_5