Skip to main content
Erschienen in: International Journal on Interactive Design and Manufacturing (IJIDeM) 1/2019

05.06.2018 | Original Paper

Modelling and experimental validation of surface roughness in precision turning of dual-phase materials considering process uncertainties

verfasst von: Samar Elsanabary, Ahmed Elkaseer, Saber Abd-Rabbo, Mohammed AbdElsalam, Shaban Abdou

Erschienen in: International Journal on Interactive Design and Manufacturing (IJIDeM) | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the development and experimental validation of a model to predict the surface roughness generated during precision turning. In particular, in addition to the kinematic parameters of the turning process, the proposed model also takes into consideration the effects of the minimum chip thickness and elastic recovery together with uncertainties attributable to the blend nature of dual-phase materials. The aim of the model is to minimise the contribution of uncertainty errors due to the stochastic distribution of the phases present within the material microstructure, to better predict surface roughness under different cutting conditions. The developed model was experimentally validated by machining two different dual-phase materials, brass 6040 and medium carbon steel AISI 1045, under a range of processing parameters. The roughness of the generated surface was measured and compared with those predicted by the model for similar conditions. Preliminary results indicated that the trend of model’s predictions agreed relatively well with the experimental results. However, the proposed model was then experimentally calibrated and lower differences between measured and predicted values were obtained, these varied between 16.5 and 23.3%. If results obtained at very low feed rates were excluded, the average differences for brass 6040 were substantially reduced from 20.5 and 16.5 to 11.2 and 10.3%, using cutting tools with nose radii of 200 and \(400 \, {\upmu }\hbox {m}\), respectively. Similarly, when machining medium carbon steel AISI 1045 using 200 and \(400 \, {\upmu }\hbox {m}\) nose-radii cutting tools, the average differences decreased substantially, from 23.3 and 18.8 to 18.5 and 14.6%, respectively. Simulation-based study of the surface generation process in precision turning of dual-phase materials was conducted, and the results of the simulation trials have been utilised to optimise the cutting process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu, X., Devor, R.E., Kapoor, S.G.: Model-based analysis of the surface generation in micro end milling-Part I: model development. ASME J. Manuf. Sci. Eng. 129, 453–460 (2007)CrossRef Liu, X., Devor, R.E., Kapoor, S.G.: Model-based analysis of the surface generation in micro end milling-Part I: model development. ASME J. Manuf. Sci. Eng. 129, 453–460 (2007)CrossRef
2.
Zurück zum Zitat Jihua, W., Zhanqiang, L.: Modelling of flow stress in orthogonal micro-cutting process based on strain gradient plasticity theory. Int. J. Adv. Manuf. Technol. 46, 143–149 (2010)CrossRef Jihua, W., Zhanqiang, L.: Modelling of flow stress in orthogonal micro-cutting process based on strain gradient plasticity theory. Int. J. Adv. Manuf. Technol. 46, 143–149 (2010)CrossRef
3.
Zurück zum Zitat Lai, X.M., Li, H.T., Li, C.F.: Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int. J. Mach. Tools Manuf. 48, 1–14 (2008)CrossRef Lai, X.M., Li, H.T., Li, C.F.: Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int. J. Mach. Tools Manuf. 48, 1–14 (2008)CrossRef
4.
Zurück zum Zitat Lai, X.M., Li, H.T., Li, C.F.: Modelling and experimental analysis of the effects of tool wear, minimum chip thickness and micro tool geometry on the surface roughness in micro-end-milling. J. Micromech. Microeng. 18, 025006 (2008). (12)CrossRef Lai, X.M., Li, H.T., Li, C.F.: Modelling and experimental analysis of the effects of tool wear, minimum chip thickness and micro tool geometry on the surface roughness in micro-end-milling. J. Micromech. Microeng. 18, 025006 (2008). (12)CrossRef
5.
Zurück zum Zitat Venkata, R., Kalyankar, V.D.: Optimization of modern machining processes using advanced optimization techniques: a review. Int. J. Adv. Manuf. Technol. 73, 1159–1188 (2014)CrossRef Venkata, R., Kalyankar, V.D.: Optimization of modern machining processes using advanced optimization techniques: a review. Int. J. Adv. Manuf. Technol. 73, 1159–1188 (2014)CrossRef
6.
Zurück zum Zitat Taniguchi, N.: Current status in and future trends of ultra-precision machining and ultrafine materials processing. Ann. CIRP 32(2), 573–582 (1983)CrossRef Taniguchi, N.: Current status in and future trends of ultra-precision machining and ultrafine materials processing. Ann. CIRP 32(2), 573–582 (1983)CrossRef
7.
Zurück zum Zitat Dornfeld, D., Min, S., Takeuchi, Y.: Recent advances in mechanical micromachining. CIRP Ann. 55(2), 745–768 (2006)CrossRef Dornfeld, D., Min, S., Takeuchi, Y.: Recent advances in mechanical micromachining. CIRP Ann. 55(2), 745–768 (2006)CrossRef
8.
Zurück zum Zitat Pramanik, A., Neo, K.S., Rahman, M., Li, X.P., Sawa, M., Maeda, Y.: Ultra precision turning of electroless nickel: effects of crystal orientation and origin of diamond tools. Int. J. Adv. Manuf. Technol. 43, 681–689 (2009)CrossRef Pramanik, A., Neo, K.S., Rahman, M., Li, X.P., Sawa, M., Maeda, Y.: Ultra precision turning of electroless nickel: effects of crystal orientation and origin of diamond tools. Int. J. Adv. Manuf. Technol. 43, 681–689 (2009)CrossRef
9.
Zurück zum Zitat Jeong-Du, K., Dong-Sik, K.: Development and application of an ultra-precision lathe. Int. J. Adv. Manuf. Technol. 13, 164–171 (1997)CrossRef Jeong-Du, K., Dong-Sik, K.: Development and application of an ultra-precision lathe. Int. J. Adv. Manuf. Technol. 13, 164–171 (1997)CrossRef
10.
Zurück zum Zitat Piljek, P., Keran, Z., Math, M.: Micromachining—review of literature from 1980 to 2010. In: Interdisciplinary Description of Complex Systems : INDECS, pp. 1–27 (2014) Piljek, P., Keran, Z., Math, M.: Micromachining—review of literature from 1980 to 2010. In: Interdisciplinary Description of Complex Systems : INDECS, pp. 1–27 (2014)
11.
Zurück zum Zitat Vogler, M., Kapoor, S., Devor, R.: On the modelling and analysis of machining performance in micro end milling, part 1: surface generation. ASME J. Manuf. Sci. Eng. 126, 685–694 (2004)CrossRef Vogler, M., Kapoor, S., Devor, R.: On the modelling and analysis of machining performance in micro end milling, part 1: surface generation. ASME J. Manuf. Sci. Eng. 126, 685–694 (2004)CrossRef
12.
Zurück zum Zitat Liu, K.: Process modelling of micro-cutting including strain gradient effect. Ph.D. Thesis, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, USA (2005) Liu, K.: Process modelling of micro-cutting including strain gradient effect. Ph.D. Thesis, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, USA (2005)
14.
Zurück zum Zitat Oliveira, F.B., Rodrigues, A.R., Coelho, R.T., Souza, A.F.: Size effect and minimum chip thickness in micromilling. Int. J. Mach. Tools Manuf. 89, 39–54 (2015)CrossRef Oliveira, F.B., Rodrigues, A.R., Coelho, R.T., Souza, A.F.: Size effect and minimum chip thickness in micromilling. Int. J. Mach. Tools Manuf. 89, 39–54 (2015)CrossRef
15.
Zurück zum Zitat Zhang, T., Liu, Z., Shi, Z., Xu, Ch.: Size effect on surface roughness in micro turning. Int. J. Precis. Eng. Manuf. 14(3), 345–349 (2013)CrossRef Zhang, T., Liu, Z., Shi, Z., Xu, Ch.: Size effect on surface roughness in micro turning. Int. J. Precis. Eng. Manuf. 14(3), 345–349 (2013)CrossRef
16.
Zurück zum Zitat Chae, J., Park, S.S., Freiheit, T.: Investigation of micro-cutting operations. Int. J. Mach. Tools Manuf. 46(3–4), 313–332 (2006)CrossRef Chae, J., Park, S.S., Freiheit, T.: Investigation of micro-cutting operations. Int. J. Mach. Tools Manuf. 46(3–4), 313–332 (2006)CrossRef
17.
Zurück zum Zitat Liu, X., Devor, R.E., Kapoor, S.G.: An analytical model for the prediction of minimum chip thickness in micromachining. ASME J. Manuf. Sci. Eng. 128, 474–481 (2006)CrossRef Liu, X., Devor, R.E., Kapoor, S.G.: An analytical model for the prediction of minimum chip thickness in micromachining. ASME J. Manuf. Sci. Eng. 128, 474–481 (2006)CrossRef
19.
Zurück zum Zitat Elkaseer, A.M., Dimov, S.S., Popov, K.B., Negm, M., Minev, R.: Modelling the material microstructure effects on the surface generation process in micro end milling of dual-phase materials. J. Manuf. Sci. Eng. 134, 044501 (2012). (1-10)CrossRef Elkaseer, A.M., Dimov, S.S., Popov, K.B., Negm, M., Minev, R.: Modelling the material microstructure effects on the surface generation process in micro end milling of dual-phase materials. J. Manuf. Sci. Eng. 134, 044501 (2012). (1-10)CrossRef
20.
Zurück zum Zitat Liu, X., Devor, R.E., Kapoor, S.G.: Model-based analysis of the surface generation in microendmilling-Part II: experimental validation and analysis. ASME J. Manuf. Sci. Eng. 129, 461–469 (2007)CrossRef Liu, X., Devor, R.E., Kapoor, S.G.: Model-based analysis of the surface generation in microendmilling-Part II: experimental validation and analysis. ASME J. Manuf. Sci. Eng. 129, 461–469 (2007)CrossRef
21.
Zurück zum Zitat Zhanqiang, L., Zhenyu, S., Yi, W.: Definition and determination of the minimum uncut chip thickness of microcutting. Int. J. Adv. Manuf. Technol. 69, 1219–1232 (2013)CrossRef Zhanqiang, L., Zhenyu, S., Yi, W.: Definition and determination of the minimum uncut chip thickness of microcutting. Int. J. Adv. Manuf. Technol. 69, 1219–1232 (2013)CrossRef
22.
Zurück zum Zitat Zhang, T., Liu, Z., Xu, Ch.: Influence of size effect on burr formation in micro cutting. Int. J. Adv. Manuf. Technol. 68, 1911–1917 (2013)CrossRef Zhang, T., Liu, Z., Xu, Ch.: Influence of size effect on burr formation in micro cutting. Int. J. Adv. Manuf. Technol. 68, 1911–1917 (2013)CrossRef
23.
Zurück zum Zitat Elkaseer, A.M., Brousseau, E.B.: AFM probe-based mechanical machining: modelling of the surface generation process. In: 7th International Conference on Micro Manufacturing (ICOMM2012), pp. 78–84 (2012) Elkaseer, A.M., Brousseau, E.B.: AFM probe-based mechanical machining: modelling of the surface generation process. In: 7th International Conference on Micro Manufacturing (ICOMM2012), pp. 78–84 (2012)
24.
Zurück zum Zitat Ye, X., Guan, J., Wang, J., Wang, L., Cao, Y.: Model for surface topography prediction in cylinder turning. In: 13th CIRP Conference on Computer Aided Tolerancing, Procedia CIRP 27, pp. 286–291 (2015) Ye, X., Guan, J., Wang, J., Wang, L., Cao, Y.: Model for surface topography prediction in cylinder turning. In: 13th CIRP Conference on Computer Aided Tolerancing, Procedia CIRP 27, pp. 286–291 (2015)
25.
Zurück zum Zitat Chen, J., Zhao, Q.: A model for predicting surface roughness in single-point diamond turning. Measurement 69(2015), 20–30 (2015)CrossRef Chen, J., Zhao, Q.: A model for predicting surface roughness in single-point diamond turning. Measurement 69(2015), 20–30 (2015)CrossRef
26.
Zurück zum Zitat He, C.L., Zong, W.J., Sun, T.: Origins for the size effect of surface roughness in diamond turning. Int. J. Mach. Tools Manuf. 106(2016), 22–42 (2016)CrossRef He, C.L., Zong, W.J., Sun, T.: Origins for the size effect of surface roughness in diamond turning. Int. J. Mach. Tools Manuf. 106(2016), 22–42 (2016)CrossRef
27.
Zurück zum Zitat Yue, X., Xu, M., Du, W., Chu, C.: Effect of cutting edge radius on surface roughness in diamond tool turning of transparent MgAl2O4 spinel ceramic. Opt. Mater. 2016, 1–7 (2016) Yue, X., Xu, M., Du, W., Chu, C.: Effect of cutting edge radius on surface roughness in diamond tool turning of transparent MgAl2O4 spinel ceramic. Opt. Mater. 2016, 1–7 (2016)
33.
Zurück zum Zitat Liu, X.: Cutting mechanisms in micro-end milling and their influence of surface generation. Ph.D. Thesis, University of Illinois, Urbana-Champaign (2006) Liu, X.: Cutting mechanisms in micro-end milling and their influence of surface generation. Ph.D. Thesis, University of Illinois, Urbana-Champaign (2006)
35.
Zurück zum Zitat Wang, W., Kweon, S.H., Yang, S.H.: A sudy on roughness of the micro end milled surface produced by a miniatured machine tool. J. Mater. Process. Technol. 162–163, 702–708 (2005)CrossRef Wang, W., Kweon, S.H., Yang, S.H.: A sudy on roughness of the micro end milled surface produced by a miniatured machine tool. J. Mater. Process. Technol. 162–163, 702–708 (2005)CrossRef
36.
Zurück zum Zitat Elkaseer, A.M., Dimov, S.S., Popov, K.B., Minev, R.M.: Tool wear in micro-endmilling: material microstructure effects, modelling, and experimental validation. J. Micro Nano-Manuf. 2(4), 044502 (2014)CrossRef Elkaseer, A.M., Dimov, S.S., Popov, K.B., Minev, R.M.: Tool wear in micro-endmilling: material microstructure effects, modelling, and experimental validation. J. Micro Nano-Manuf. 2(4), 044502 (2014)CrossRef
37.
Zurück zum Zitat Kirkup, L., Frenkel, B.: An Introduction to Uncertainty in Measurement. Cambridge University Press, Cambridge (2006)CrossRefMATH Kirkup, L., Frenkel, B.: An Introduction to Uncertainty in Measurement. Cambridge University Press, Cambridge (2006)CrossRefMATH
38.
Zurück zum Zitat Jurkovic, Z., Cukor, G., Andrejcak, I.: Improving the surface roughness at longitudinal turning using the different optimization methods. Tech. Gaz. 17, 397–402 (2010) Jurkovic, Z., Cukor, G., Andrejcak, I.: Improving the surface roughness at longitudinal turning using the different optimization methods. Tech. Gaz. 17, 397–402 (2010)
Metadaten
Titel
Modelling and experimental validation of surface roughness in precision turning of dual-phase materials considering process uncertainties
verfasst von
Samar Elsanabary
Ahmed Elkaseer
Saber Abd-Rabbo
Mohammed AbdElsalam
Shaban Abdou
Publikationsdatum
05.06.2018
Verlag
Springer Paris
Erschienen in
International Journal on Interactive Design and Manufacturing (IJIDeM) / Ausgabe 1/2019
Print ISSN: 1955-2513
Elektronische ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-018-0490-8

Weitere Artikel der Ausgabe 1/2019

International Journal on Interactive Design and Manufacturing (IJIDeM) 1/2019 Zur Ausgabe