Skip to main content

2017 | OriginalPaper | Buchkapitel

11. Modelling and Optimization of Inertial Sensor-Accelerometer

verfasst von : Zakriya Mohammed, Waqas Amin Gill, Mahmoud Rasras

Erschienen in: Outlook and Challenges of Nano Devices, Sensors, and MEMS

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This book chapter presents the modelling and optimization details of a Micromachined (MEMS) dual-axis accelerometer. After providing detailed review of existing and proposed applications of these inertial sensors, the chapter introduces various present-day accelerometers available in the literature. The major challenges faced by the accelerometer sensors designs are minimization of the device foot print, noise floor, and cross-axis sensitivity. As dual axis accelerometers are designed to work in both x- and y- (in-plane) directions, they became prone to cross-coupling between the in-plane and the out of the plane (Z-axis) direction. This is due to the structural design that makes them sensitive to other cross-axis acceleration. In most of the design mode-cross-coupling occurs with Z-direction. Moreover, low stiffness in Z-axis causes the proof-mass to sag due to gravity. The present design is modelled according to the Inertial Measurement Unit (IMU) platform of GlobalFoundries. The designed accelerometer consist of a square proof mass suspended using crab leg springs. Primary focus is given to have high differential capacitance sensitivity in small foot print of 1.5 × 1.5 mm. Also, to reduce cross-axis sensitivity and to reduce mode coupling between in-plane modes and Z-axis mode. Simulation results show that the differential capacitive sensitivity of 59 fF/g. The device achieves a mode separation of 10 kHz between the in-plane and out-of-the plane modes. The average cross-axis sensitivity in XY is 1.33% and cross-axis sensitivity due to Z-axis acceleration is zero.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I. Frosio, F. Pedersini, N.A. Borghese, Autocalibration of MEMS Accelerometers. IEEE Trans. Instrum. Meas. 58(6), 2034–2041 (2009)CrossRef I. Frosio, F. Pedersini, N.A. Borghese, Autocalibration of MEMS Accelerometers. IEEE Trans. Instrum. Meas. 58(6), 2034–2041 (2009)CrossRef
2.
Zurück zum Zitat M. Ferraresi, S. Pozzi, in Advanced Microsystems for Automotive Applications. MEMS Sensors for Non-Safety Automotive (Springer, Berlin Heidelberg, 2009), pp. 355–367 M. Ferraresi, S. Pozzi, in Advanced Microsystems for Automotive Applications. MEMS Sensors for Non-Safety Automotive (Springer, Berlin Heidelberg, 2009), pp. 355–367
3.
Zurück zum Zitat S. Luczak, W. Oleksiuk, M. Bodnicki, Sensing tilt with MEMS accelerometers. IEEE Sensors J. 6(6), 1669–1675 (2006)CrossRef S. Luczak, W. Oleksiuk, M. Bodnicki, Sensing tilt with MEMS accelerometers. IEEE Sensors J. 6(6), 1669–1675 (2006)CrossRef
4.
Zurück zum Zitat R. Perez, Ú. Costa, M. Torrent, J. Solana, E. Opisso, C. Caceres, J.M. Tormos, J. Medina, E.J. Gómez, Upper limb portable motion analysis system based on inertial technology for neurorehabilitation purposes. Sensors 10(12), 10733–10751 (2010)CrossRef R. Perez, Ú. Costa, M. Torrent, J. Solana, E. Opisso, C. Caceres, J.M. Tormos, J. Medina, E.J. Gómez, Upper limb portable motion analysis system based on inertial technology for neurorehabilitation purposes. Sensors 10(12), 10733–10751 (2010)CrossRef
5.
Zurück zum Zitat J. Söderkvist, Micromachined gyroscopes. Sens. Actuators, A 43(1–3), 65–71 (1994)CrossRef J. Söderkvist, Micromachined gyroscopes. Sens. Actuators, A 43(1–3), 65–71 (1994)CrossRef
6.
Zurück zum Zitat C.-W. Tan, S. Park, Design of accelerometer-based inertial navigation systems. IEEE Trans. Instrum. Meas. 54(6), 2520–2530 (2005)CrossRef C.-W. Tan, S. Park, Design of accelerometer-based inertial navigation systems. IEEE Trans. Instrum. Meas. 54(6), 2520–2530 (2005)CrossRef
7.
Zurück zum Zitat Z.F. Syed, P. Aggarwal, C. Goodall, X. Niu, N. El-Sheimy, A new multi-position calibration method for MEMS inertial navigation systems. Meas. Sci. Technol. 18(7), 1897–1907 (2007)CrossRef Z.F. Syed, P. Aggarwal, C. Goodall, X. Niu, N. El-Sheimy, A new multi-position calibration method for MEMS inertial navigation systems. Meas. Sci. Technol. 18(7), 1897–1907 (2007)CrossRef
8.
Zurück zum Zitat P. Aggarwal, Z. Syed, A. Noureldin, N. El-Sheimy, MEMS-Based Integrated Navigation (GNSS Technology and Applications) (Artech House, Norwood, Massachusetts 2010) P. Aggarwal, Z. Syed, A. Noureldin, N. El-Sheimy, MEMS-Based Integrated Navigation (GNSS Technology and Applications) (Artech House, Norwood, Massachusetts 2010)
9.
Zurück zum Zitat L.M. Roylance, J.B. Angell, A batch-fabricated silicon accelerometer. IEEE Trans. Electron Devices 26(12), 1911–1917 (1979)CrossRef L.M. Roylance, J.B. Angell, A batch-fabricated silicon accelerometer. IEEE Trans. Electron Devices 26(12), 1911–1917 (1979)CrossRef
10.
Zurück zum Zitat N. Yazdi, F. Ayazi, K. Najafi, Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1659 (1998)CrossRef N. Yazdi, F. Ayazi, K. Najafi, Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1659 (1998)CrossRef
11.
Zurück zum Zitat H.V. Allen, S.C. Terry, D.W. Bruin, Accelerometer systems with self-testable features. Sens. Actuators 20(1–2), 153–161 (1989)CrossRef H.V. Allen, S.C. Terry, D.W. Bruin, Accelerometer systems with self-testable features. Sens. Actuators 20(1–2), 153–161 (1989)CrossRef
12.
Zurück zum Zitat C. Yeh, K. Najafi, A low-voltage tunneling-based silicon microaccelerometer. IEEE Trans. Electron Devices 44(11), 1875–1882 (1997)CrossRef C. Yeh, K. Najafi, A low-voltage tunneling-based silicon microaccelerometer. IEEE Trans. Electron Devices 44(11), 1875–1882 (1997)CrossRef
13.
Zurück zum Zitat C.-H. Liu, T.W. Kenny, A high-precision, wide-bandwidth micromachined tunneling accelerometer. J. Microelectromech. Syst. 10(3), 425–433 (2001)CrossRef C.-H. Liu, T.W. Kenny, A high-precision, wide-bandwidth micromachined tunneling accelerometer. J. Microelectromech. Syst. 10(3), 425–433 (2001)CrossRef
14.
Zurück zum Zitat A.A. Seshia, M. Palaniapan, T.A. Roessing, R.T. Howe, R.W. Gooch, T.R. Schimert, S. Montague, A vacuum packaged surface micromachined resonant accelerometer. J. Microelectromech. Syst. 11(6), 784–793 (2002)CrossRef A.A. Seshia, M. Palaniapan, T.A. Roessing, R.T. Howe, R.W. Gooch, T.R. Schimert, S. Montague, A vacuum packaged surface micromachined resonant accelerometer. J. Microelectromech. Syst. 11(6), 784–793 (2002)CrossRef
15.
Zurück zum Zitat J. Danel, F. Michel, G. Delapierre, Micromachining of quartz and its application to an acceleration sensor. Sens. Actuators, A 23(1–3), 971–977 (1990)CrossRef J. Danel, F. Michel, G. Delapierre, Micromachining of quartz and its application to an acceleration sensor. Sens. Actuators, A 23(1–3), 971–977 (1990)CrossRef
16.
Zurück zum Zitat E.W. Bums, R.D. Homing, W.R. Herb, J.D. Zook, H.Guckel, Resonant microibeam accelerometers. The 8th International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, 1995 E.W. Bums, R.D. Homing, W.R. Herb, J.D. Zook, H.Guckel, Resonant microibeam accelerometers. The 8th International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, 1995
17.
Zurück zum Zitat A.M. Leung, J. Jones, E. Czyzewska, J. Chen, B. Woods, Micromachined accelerometer based on convection heat transfer. The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg, 1998 A.M. Leung, J. Jones, E. Czyzewska, J. Chen, B. Woods, Micromachined accelerometer based on convection heat transfer. The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg, 1998
18.
Zurück zum Zitat P.-L. Chen, R.S. Muller, R.D. Jolly, G.L. Halac, R.M. White, A.P. Andrews, T.C. Lim, M.E. Motamedi, Integrated silicon microbeam PI-FET accelerometer. IEEE Trans. Electron Devices 29(1), 27–33 (1982)CrossRef P.-L. Chen, R.S. Muller, R.D. Jolly, G.L. Halac, R.M. White, A.P. Andrews, T.C. Lim, M.E. Motamedi, Integrated silicon microbeam PI-FET accelerometer. IEEE Trans. Electron Devices 29(1), 27–33 (1982)CrossRef
19.
Zurück zum Zitat D.L. DeVoe, A.P. Pisano, Surface micromachined piezoelectric accelerometers (PiXLs). J. Microelectromech. Syst. 10(2), 180–186 (2001)CrossRef D.L. DeVoe, A.P. Pisano, Surface micromachined piezoelectric accelerometers (PiXLs). J. Microelectromech. Syst. 10(2), 180–186 (2001)CrossRef
20.
Zurück zum Zitat A. Llobera, V. Seidemann, J.A. Plaza, V.J. Cadarso, S. Buttgenbach, SU-8 optical accelerometers. J. Microelectromech. Syst. 16(1), 111–121 (2007)CrossRef A. Llobera, V. Seidemann, J.A. Plaza, V.J. Cadarso, S. Buttgenbach, SU-8 optical accelerometers. J. Microelectromech. Syst. 16(1), 111–121 (2007)CrossRef
21.
Zurück zum Zitat T. Tsuchiya, H. Funabashi, A z-axis differential capacitive SOI accelerometer with vertical comb electrodes. Sens. Actuators, A 116(3), 378–383 (2004)CrossRef T. Tsuchiya, H. Funabashi, A z-axis differential capacitive SOI accelerometer with vertical comb electrodes. Sens. Actuators, A 116(3), 378–383 (2004)CrossRef
22.
Zurück zum Zitat B.E. Boser, Electronics for micromachined inertial sensors. International Conference on Solid State Sensors and Actuators, Chicago, 1997 B.E. Boser, Electronics for micromachined inertial sensors. International Conference on Solid State Sensors and Actuators, Chicago, 1997
23.
Zurück zum Zitat H. Luo, G.K. Fedder, L.R. Carley, A 1 mG lateral CMOS-MEMS accelerometer. The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, 2000 H. Luo, G.K. Fedder, L.R. Carley, A 1 mG lateral CMOS-MEMS accelerometer. The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, 2000
24.
Zurück zum Zitat J. Chae, H. Kulah, K. Najafi, A hybrid silicon-on-glass (SOG) lateral micro-accelerometer with CMOS readout circuitry. The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 2002 J. Chae, H. Kulah, K. Najafi, A hybrid silicon-on-glass (SOG) lateral micro-accelerometer with CMOS readout circuitry. The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 2002
25.
Zurück zum Zitat I.Y. Park, C.W. Lee, H.S. Jang, Y.S. Oh, B.J. Ha, Capacitive sensing type surface micromachined silicon accelerometer with a stiffness tuning capability. The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg, 1998 I.Y. Park, C.W. Lee, H.S. Jang, Y.S. Oh, B.J. Ha, Capacitive sensing type surface micromachined silicon accelerometer with a stiffness tuning capability. The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg, 1998
26.
Zurück zum Zitat Y. Matsumoto, M. Iwakiri, H. Tanaka, M. Ishida, T. Nakamura, A capacitive accelerometer using SDB-SOI structure. Sens. Actuators, A 53(1–3), 267–272 (1996)CrossRef Y. Matsumoto, M. Iwakiri, H. Tanaka, M. Ishida, T. Nakamura, A capacitive accelerometer using SDB-SOI structure. Sens. Actuators, A 53(1–3), 267–272 (1996)CrossRef
27.
Zurück zum Zitat H. Xie, G.K. Fedder, A CMOS z-axis capacitive accelerometer with comb-finger sensing. The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, 2000 H. Xie, G.K. Fedder, A CMOS z-axis capacitive accelerometer with comb-finger sensing. The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, 2000
28.
Zurück zum Zitat K.-Y. Park, C.-W. Leeb, H.-S. Janga, Y. Ohc, B. Hac, Capacitive type surface-micromachined silicon accelerometer with stiffness tuning capability. Sens. Actuators, A 73(1–2), 109–116 (1999)CrossRef K.-Y. Park, C.-W. Leeb, H.-S. Janga, Y. Ohc, B. Hac, Capacitive type surface-micromachined silicon accelerometer with stiffness tuning capability. Sens. Actuators, A 73(1–2), 109–116 (1999)CrossRef
29.
Zurück zum Zitat Y.-W. Hsu, J.-Y. Chen, H.-T. Chien, S. Chen, S.-T. Lin, L.-P. Liao, New capacitive low-g triaxial accelerometer with low cross-axis sensitivity. J. Micromech. Microeng. 20(5), 1–10 (2010)CrossRef Y.-W. Hsu, J.-Y. Chen, H.-T. Chien, S. Chen, S.-T. Lin, L.-P. Liao, New capacitive low-g triaxial accelerometer with low cross-axis sensitivity. J. Micromech. Microeng. 20(5), 1–10 (2010)CrossRef
30.
Zurück zum Zitat A. Alfaifi, F. Nabki, M.N. El-Gamal, A dual-axis bulk micromachined accelerometer with low cross-sensitivity. 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Seville, 2012 A. Alfaifi, F. Nabki, M.N. El-Gamal, A dual-axis bulk micromachined accelerometer with low cross-sensitivity. 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Seville, 2012
31.
Zurück zum Zitat A. Baschirotto, A. Gola, E. Chiesa, E. Lasalandra, F. Pasolini, M. Tronconi, T. Ungaretti, A ±1-g dual-axis linear accelerometer in a standard 0.5-μm CMOS technology for high-sensitivity applications. IEEE J. Solid State Circuits 38(7), 1292–1297 (2003)CrossRef A. Baschirotto, A. Gola, E. Chiesa, E. Lasalandra, F. Pasolini, M. Tronconi, T. Ungaretti, A ±1-g dual-axis linear accelerometer in a standard 0.5-μm CMOS technology for high-sensitivity applications. IEEE J. Solid State Circuits 38(7), 1292–1297 (2003)CrossRef
32.
Zurück zum Zitat Z. Mohammed, G. Dushaq, A. Chatterjee, M. Rasras, Bi-axial highly sensitive ±5 g polysilicon based differential capacitive accelerometer. 17th IEEE International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, Montpellier, France, 2016 Z. Mohammed, G. Dushaq, A. Chatterjee, M. Rasras, Bi-axial highly sensitive ±5 g polysilicon based differential capacitive accelerometer. 17th IEEE International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, Montpellier, France, 2016
33.
Zurück zum Zitat C.-M. Sun, M.-H. Tsai, Y.-C. Liu, W. Fang, Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS technique. IEEE Trans. Electron Devices 57(7), 1670–1679 (2010)CrossRef C.-M. Sun, M.-H. Tsai, Y.-C. Liu, W. Fang, Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS technique. IEEE Trans. Electron Devices 57(7), 1670–1679 (2010)CrossRef
34.
Zurück zum Zitat J. M. Darmanin, I. Grech, J. Micallef, E. Gatt, O. Casha, A. Briffa, Design consideration for three-axis MEMS accelerometers using an asymmetric proof mass. IEEE EUROCON, Zagreb, 2013 J. M. Darmanin, I. Grech, J. Micallef, E. Gatt, O. Casha, A. Briffa, Design consideration for three-axis MEMS accelerometers using an asymmetric proof mass. IEEE EUROCON, Zagreb, 2013
35.
Zurück zum Zitat Z. Mohammed, O.T. Waheed, I. Elfadel, A. Chatterjee, M. Rasras, Design, analysis and system level modelling of single axis MEMS capacitive accelerometer. ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, Arizona, USA, 2016 Z. Mohammed, O.T. Waheed, I. Elfadel, A. Chatterjee, M. Rasras, Design, analysis and system level modelling of single axis MEMS capacitive accelerometer. ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, Arizona, USA, 2016
36.
Zurück zum Zitat Z. Mohammed, M. Rasras, Optimization of finger spacing and spring constant in comb type capacitive accelerometer. 7th IEEE International Nanoelectronics Conference (INEC), Chengdu, China, 2016 Z. Mohammed, M. Rasras, Optimization of finger spacing and spring constant in comb type capacitive accelerometer. 7th IEEE International Nanoelectronics Conference (INEC), Chengdu, China, 2016
37.
Zurück zum Zitat Y. Terzioglu, S.E. Alper, K. Azgin, T. Akin, A capacitive MEMS accelerometer readout with concurrent detection and feedback using discrete components. IEEE/ION Position, Location and Navigation Symposium–PLANS 2014, Monterey, CA, 2014 Y. Terzioglu, S.E. Alper, K. Azgin, T. Akin, A capacitive MEMS accelerometer readout with concurrent detection and feedback using discrete components. IEEE/ION Position, Location and Navigation Symposium–PLANS 2014, Monterey, CA, 2014
Metadaten
Titel
Modelling and Optimization of Inertial Sensor-Accelerometer
verfasst von
Zakriya Mohammed
Waqas Amin Gill
Mahmoud Rasras
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-50824-5_11

Neuer Inhalt