Skip to main content
Erschienen in: Archive of Applied Mechanics 4/2019

20.02.2019 | Review Article

Modelling and simulation methods applied to coupled problems in porous-media mechanics

verfasst von: Wolfgang Ehlers, Arndt Wagner

Erschienen in: Archive of Applied Mechanics | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Continuum mechanics usually considers the theoretical and computational description of standard single-phasic materials in the framework of either solid mechanics, fluid mechanics or gas dynamics. However, growing complexity in material modelling combined with the request of users leads to a growing interest in porous-media mechanics, where porous solid materials with fluid or gaseous pore content are investigated on a macroscopic scale. In this regard, the present article reviews the theoretical and numerical framework for the description of geomechanical and biomechanical problems including elastic, elasto-plastic and visco-elastic solid behaviour partly combined with electro-active properties. For this purpose, the Theory of Porous Media is applied for an elegant consideration of the coupling phenomena of porous solids with pore fluids, no matter if the fluids have to be treated as inert fluids or as fluid mixtures. In the sense of a review article, different computational examples are presented to illuminate the possibilities and challenges of porous-media mechanics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3, pp. 1–127. Academic Press, New York (1976) Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3, pp. 1–127. Academic Press, New York (1976)
2.
Zurück zum Zitat Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)CrossRefMATH Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)CrossRefMATH
3.
Zurück zum Zitat Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)CrossRefMATH Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)CrossRefMATH
4.
Zurück zum Zitat de Boer, R.: Trends in Continuum Mechanics of Porous Media, vol. 18. Theory and Applications of Transport in Porous Media. Springer, Dodrecht (2005)CrossRefMATH de Boer, R.: Trends in Continuum Mechanics of Porous Media, vol. 18. Theory and Applications of Transport in Porous Media. Springer, Dodrecht (2005)CrossRefMATH
5.
Zurück zum Zitat Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin (2002)CrossRef Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin (2002)CrossRef
6.
Zurück zum Zitat Ehlers, W.: Challenges of porous media models in geo- and biomechanical engineering including electro-chemically active polymers and gels. Int. J. Adv. Eng. Sci. Appl. Math. 1, 1–24 (2009)CrossRef Ehlers, W.: Challenges of porous media models in geo- and biomechanical engineering including electro-chemically active polymers and gels. Int. J. Adv. Eng. Sci. Appl. Math. 1, 1–24 (2009)CrossRef
8.
Zurück zum Zitat Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)MathSciNetCrossRefMATH Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)MathSciNetCrossRefMATH
9.
10.
Zurück zum Zitat Ehlers, W., Ellsiepen, P.: PANDAS: Ein FE-System zur Simulation von Sonderproblemen der Bodenmechanik. In: Wriggers, P., Meißner, U., Stein, E., Wunderlich, W. (eds.) Finite Elemente in der Baupraxis-FEM’98, pp. 391–400. Ernst & Sohn, Berlin (1998) Ehlers, W., Ellsiepen, P.: PANDAS: Ein FE-System zur Simulation von Sonderproblemen der Bodenmechanik. In: Wriggers, P., Meißner, U., Stein, E., Wunderlich, W. (eds.) Finite Elemente in der Baupraxis-FEM’98, pp. 391–400. Ernst & Sohn, Berlin (1998)
11.
Zurück zum Zitat Ehlers, W., Ellsiepen, P., Ammann, M.: Time-and space-adaptive methods applied to localization phenomena in empty and saturated micropolar and standard porous materials. Int. J. Numer. Methods Eng. 52, 503–526 (2001)CrossRefMATH Ehlers, W., Ellsiepen, P., Ammann, M.: Time-and space-adaptive methods applied to localization phenomena in empty and saturated micropolar and standard porous materials. Int. J. Numer. Methods Eng. 52, 503–526 (2001)CrossRefMATH
12.
Zurück zum Zitat Ehlers, W., Acartürk, A., Karajan, N.: Advances in modelling saturated soft biological tissues and chemically active gels. Arch. Appl. Mech. 80, 467–478 (2010)CrossRefMATH Ehlers, W., Acartürk, A., Karajan, N.: Advances in modelling saturated soft biological tissues and chemically active gels. Arch. Appl. Mech. 80, 467–478 (2010)CrossRefMATH
13.
Zurück zum Zitat Ehlers, W., Karajan, N., Markert, B.: An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech. Model. Mechanobiol. 8, 233–251 (2009)CrossRef Ehlers, W., Karajan, N., Markert, B.: An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech. Model. Mechanobiol. 8, 233–251 (2009)CrossRef
14.
Zurück zum Zitat Ehlers, W., Avci, O.: Stress-dependent hardening and failure surfaces of dry sand. Int. J. Numer. Anal. Methods Geomech. 37(8), 787–809 (2013)CrossRef Ehlers, W., Avci, O.: Stress-dependent hardening and failure surfaces of dry sand. Int. J. Numer. Anal. Methods Geomech. 37(8), 787–809 (2013)CrossRef
15.
Zurück zum Zitat Ehlers, W., Häberle, K.: Interfacial mass transfer during gas-liquid phase change in deformable porous media with heat transfer. Transp. Porous Med. 114, 525–556 (2016)MathSciNetCrossRef Ehlers, W., Häberle, K.: Interfacial mass transfer during gas-liquid phase change in deformable porous media with heat transfer. Transp. Porous Med. 114, 525–556 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat Schenke, M., Ehlers, W.: Parallel solution of volume-coupled multi-field problems using an Abaqus-PANDAS software interface. Proc. Appl. Math. Mech. 15, 419–420 (2015)CrossRef Schenke, M., Ehlers, W.: Parallel solution of volume-coupled multi-field problems using an Abaqus-PANDAS software interface. Proc. Appl. Math. Mech. 15, 419–420 (2015)CrossRef
17.
Zurück zum Zitat Hashin, Z.: Analysis of composite materials-a survey. ASME J. Appl. Mech. 50, 481–505 (1983)CrossRefMATH Hashin, Z.: Analysis of composite materials-a survey. ASME J. Appl. Mech. 50, 481–505 (1983)CrossRefMATH
18.
Zurück zum Zitat Ehlers, W.: Effective stresses in multiphasic porous media: a thermodynamic investigation of a fully non-linear model with compressible and incompressible constituents. Geomech. Energy Environ. 15, 35–46 (2018)CrossRef Ehlers, W.: Effective stresses in multiphasic porous media: a thermodynamic investigation of a fully non-linear model with compressible and incompressible constituents. Geomech. Energy Environ. 15, 35–46 (2018)CrossRef
19.
Zurück zum Zitat Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)MathSciNetCrossRefMATH Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefMATH Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefMATH
21.
Zurück zum Zitat Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media, Hydrology Papers, vol. 3. Colorado State University, Fort Collins (1964) Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media, Hydrology Papers, vol. 3. Colorado State University, Fort Collins (1964)
22.
Zurück zum Zitat Wieners, C., Graf, T., Ammann, M., Ehlers, W.: Parallel Krylov methods and the application to 3-d simulations of a triphasic porous media model in soil mechanics. Computat. Mech. 36, 409–420 (2005)CrossRefMATH Wieners, C., Graf, T., Ammann, M., Ehlers, W.: Parallel Krylov methods and the application to 3-d simulations of a triphasic porous media model in soil mechanics. Computat. Mech. 36, 409–420 (2005)CrossRefMATH
23.
Zurück zum Zitat Dalton, J.: On the expansion of elastic fluids by heat. Essay IV of Mem. Lit. Philos. Soc. Manch. 5, 595–602 (1802) Dalton, J.: On the expansion of elastic fluids by heat. Essay IV of Mem. Lit. Philos. Soc. Manch. 5, 595–602 (1802)
24.
Zurück zum Zitat de Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng. Comput. 8, 317–332 (1991)CrossRef de Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng. Comput. 8, 317–332 (1991)CrossRef
25.
Zurück zum Zitat Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elasto-plasticity. Int. J. Solids Strucut. 31, 1063–1084 (1994)MathSciNetCrossRefMATH Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elasto-plasticity. Int. J. Solids Strucut. 31, 1063–1084 (1994)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Ehlers, W., Volk, W.: On theoretical and numerical methods in the theory of porous media based on polar and non-polar elastoplastic solid materials. Int. J. Solids Struct. 35, 4597–4617 (1998)CrossRefMATH Ehlers, W., Volk, W.: On theoretical and numerical methods in the theory of porous media based on polar and non-polar elastoplastic solid materials. Int. J. Solids Struct. 35, 4597–4617 (1998)CrossRefMATH
27.
Zurück zum Zitat Needleman, A.: Material rate dependence and mesh sensitivity in localization problems. Comput. Methods Appl. Mech. Eng. 67, 69–85 (1988)CrossRefMATH Needleman, A.: Material rate dependence and mesh sensitivity in localization problems. Comput. Methods Appl. Mech. Eng. 67, 69–85 (1988)CrossRefMATH
28.
Zurück zum Zitat Mühlhaus, H.-B., Aifantis, E.C.: A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845–857 (1991)MathSciNetCrossRefMATH Mühlhaus, H.-B., Aifantis, E.C.: A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845–857 (1991)MathSciNetCrossRefMATH
29.
Zurück zum Zitat de Borst, R., Sluys, L.J., Mühlhaus, H.-B., Pamin, J.: Fundamental issues in finite element analysis of localization of deformation. Eng. Comput. 10, 99–121 (1993)CrossRef de Borst, R., Sluys, L.J., Mühlhaus, H.-B., Pamin, J.: Fundamental issues in finite element analysis of localization of deformation. Eng. Comput. 10, 99–121 (1993)CrossRef
30.
Zurück zum Zitat Ehlers, W., Graf, T., Ammann, M.: Deformation and localization analysis in partially saturated soil. Comput. Methods Appl. Mech. Eng. 193, 2885–2910 (2004)CrossRefMATH Ehlers, W., Graf, T., Ammann, M.: Deformation and localization analysis in partially saturated soil. Comput. Methods Appl. Mech. Eng. 193, 2885–2910 (2004)CrossRefMATH
31.
Zurück zum Zitat Griffith, A.A.: The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921)CrossRef Griffith, A.A.: The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921)CrossRef
32.
Zurück zum Zitat Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957) Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)
33.
Zurück zum Zitat Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)MathSciNetCrossRef Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)MathSciNetCrossRef
34.
Zurück zum Zitat Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)MathSciNetCrossRefMATH Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)CrossRefMATH Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)CrossRefMATH
36.
Zurück zum Zitat Moës, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (2002)CrossRef Moës, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (2002)CrossRef
37.
Zurück zum Zitat Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765–2778 (2010)MathSciNetCrossRefMATH Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765–2778 (2010)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Ehlers, W., Luo, C.: A phase-field approach embedded in the Theory of Porous Media for the description of dynamic hydraulic fracturing. Comput. Methods Appl. Mech. Eng. 315, 348–368 (2017)MathSciNetCrossRef Ehlers, W., Luo, C.: A phase-field approach embedded in the Theory of Porous Media for the description of dynamic hydraulic fracturing. Comput. Methods Appl. Mech. Eng. 315, 348–368 (2017)MathSciNetCrossRef
39.
Zurück zum Zitat Ehlers, W., Luo, C.: A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing, Part II: the crack-opening indicator. Comput. Methods Appl. Mech. Eng. 341, 429–442 (2018)MathSciNetCrossRef Ehlers, W., Luo, C.: A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing, Part II: the crack-opening indicator. Comput. Methods Appl. Mech. Eng. 341, 429–442 (2018)MathSciNetCrossRef
40.
Zurück zum Zitat Acartürk, A.: Simulation of charged hydrated porous media, Dissertation, Report No. II-18 of the Institute of Applied Mechanics (CE), University of Stuttgart (2009) Acartürk, A.: Simulation of charged hydrated porous media, Dissertation, Report No. II-18 of the Institute of Applied Mechanics (CE), University of Stuttgart (2009)
41.
Zurück zum Zitat Ehlers, W., Eipper, G.: Finite elastic deformations in liquid-saturated and empty porous solids. Transp. Porous Med. 34, 179–191 (1999)MathSciNetCrossRef Ehlers, W., Eipper, G.: Finite elastic deformations in liquid-saturated and empty porous solids. Transp. Porous Med. 34, 179–191 (1999)MathSciNetCrossRef
42.
Zurück zum Zitat Karajan, N.: An extended biphasic description of the inhomogeneous and anisotropic intervertebral disc. Dissertation Thesis, Report No. II-19 of the Institute of Applied Mechanics (CE), University of Stuttgart (2009) Karajan, N.: An extended biphasic description of the inhomogeneous and anisotropic intervertebral disc. Dissertation Thesis, Report No. II-19 of the Institute of Applied Mechanics (CE), University of Stuttgart (2009)
43.
Zurück zum Zitat Ehlers, W., Wagner, A.: Constitutive and computational aspects in tumor therapies of multiphasic brain tissue. In: Holzapfel, G.A., Kuhl, E. (eds.) Computer Models in Biomechanics: from Nano to Macro, pp. 263–276. Springer, Dordrecht (2013)CrossRef Ehlers, W., Wagner, A.: Constitutive and computational aspects in tumor therapies of multiphasic brain tissue. In: Holzapfel, G.A., Kuhl, E. (eds.) Computer Models in Biomechanics: from Nano to Macro, pp. 263–276. Springer, Dordrecht (2013)CrossRef
44.
Zurück zum Zitat Ehlers, W., Wagner, A.: Multi-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problem. Comput. Methods Biomech. Biomed. Eng. 18, 861–879 (2015)CrossRef Ehlers, W., Wagner, A.: Multi-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problem. Comput. Methods Biomech. Biomed. Eng. 18, 861–879 (2015)CrossRef
45.
Zurück zum Zitat Markert, B., Ehlers, W., Karajan, N.: A general polyconvex strain-energy function for fiber-reinforced materials. Proc. Appl. Math. Mech. 5, 245–246 (2005)CrossRefMATH Markert, B., Ehlers, W., Karajan, N.: A general polyconvex strain-energy function for fiber-reinforced materials. Proc. Appl. Math. Mech. 5, 245–246 (2005)CrossRefMATH
46.
Zurück zum Zitat Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., Oldfield, E.H.: Convection-enhanced delivery of macromolecules in the brain. Proc. Natl Acad. Sci. USA (PNAS) 91, 2076–2080 (1994)CrossRef Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., Oldfield, E.H.: Convection-enhanced delivery of macromolecules in the brain. Proc. Natl Acad. Sci. USA (PNAS) 91, 2076–2080 (1994)CrossRef
47.
Zurück zum Zitat Fink, D., Wagner, A., Ehlers, W.: Application-driven model reduction for the simulation of therapeutic infusion processes in multi-component brain tissue. J. Comput. Sci. 24, 101–115 (2018)CrossRef Fink, D., Wagner, A., Ehlers, W.: Application-driven model reduction for the simulation of therapeutic infusion processes in multi-component brain tissue. J. Comput. Sci. 24, 101–115 (2018)CrossRef
48.
Zurück zum Zitat Biot, M.A.: Le problème de la consolidation de matières argileuses sous une charge. Annales de la Société scientifique de Bruxelles B55, 110–113 (1935) Biot, M.A.: Le problème de la consolidation de matières argileuses sous une charge. Annales de la Société scientifique de Bruxelles B55, 110–113 (1935)
49.
Zurück zum Zitat Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefMATH Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefMATH
50.
Zurück zum Zitat Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956) Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956)
51.
Zurück zum Zitat Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, II. Higher frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956) Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, II. Higher frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956)
52.
Zurück zum Zitat Biot, M.A.: Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int. J. Solids Struct. 13, 579–597 (1977)MathSciNetCrossRefMATH Biot, M.A.: Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int. J. Solids Struct. 13, 579–597 (1977)MathSciNetCrossRefMATH
53.
Zurück zum Zitat Biot, M.A.: Variational irreversible thermodynamics of heat and mass transfer in porous solids: new concept and methods. Q. Appl. Math. 36, 1–38 (1978)MathSciNetCrossRefMATH Biot, M.A.: Variational irreversible thermodynamics of heat and mass transfer in porous solids: new concept and methods. Q. Appl. Math. 36, 1–38 (1978)MathSciNetCrossRefMATH
55.
Zurück zum Zitat Borja, R.I., Regueiro, R.A.: Dynamics of porous media at finite strain. Comput. Methods Appl. Mech. Eng. 193, 3837–3870 (2004)MathSciNetCrossRefMATH Borja, R.I., Regueiro, R.A.: Dynamics of porous media at finite strain. Comput. Methods Appl. Mech. Eng. 193, 3837–3870 (2004)MathSciNetCrossRefMATH
56.
Zurück zum Zitat Ehlers, W.: Porous media in the light of history. In: Stein, E. (ed.) The History of Theoretical, Material and Computational Mechanics–Mathematics Meets Mechanics and Engineering. Lecture Notes in Applied Mathematics and Mechanics (LAMM) vol. 1, pp. 211–227. Springer, Heidelberg (2014) Ehlers, W.: Porous media in the light of history. In: Stein, E. (ed.) The History of Theoretical, Material and Computational Mechanics–Mathematics Meets Mechanics and Engineering. Lecture Notes in Applied Mathematics and Mechanics (LAMM) vol. 1, pp. 211–227. Springer, Heidelberg (2014)
57.
Zurück zum Zitat Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Deformation and Consolidation of Porous Media. Wiley, Chichester (1987)MATH Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Deformation and Consolidation of Porous Media. Wiley, Chichester (1987)MATH
58.
Zurück zum Zitat Bishop, A.W.: The effective stress principle. Teknisk Ukeblad 39, 859–863 (1959) Bishop, A.W.: The effective stress principle. Teknisk Ukeblad 39, 859–863 (1959)
59.
Zurück zum Zitat Skempton, A.W.: Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In: Bjerrum, L., Casagrande, A., Peck, R.B., Skempton, A.W. (eds.) From Theory to Practice in Soil Mechanics, pp. 42–53. Wiley, New York (1960) Skempton, A.W.: Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In: Bjerrum, L., Casagrande, A., Peck, R.B., Skempton, A.W. (eds.) From Theory to Practice in Soil Mechanics, pp. 42–53. Wiley, New York (1960)
61.
Zurück zum Zitat Lade, P., de Boer, R.: The concept of effective stress for soil, concrete and rock. Géotechnique 47, 61–78 (1997)CrossRef Lade, P., de Boer, R.: The concept of effective stress for soil, concrete and rock. Géotechnique 47, 61–78 (1997)CrossRef
62.
Zurück zum Zitat Borja, R.I.: On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct. 43, 1764–1786 (2006)CrossRefMATH Borja, R.I.: On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct. 43, 1764–1786 (2006)CrossRefMATH
63.
Zurück zum Zitat Jiang, Y., Einav, I., Liu, M.: A thermodynamic treatment of partially saturated soils revealing the structure of effective stress. J. Mech. Phys. Solids 100, 131–146 (2017)MathSciNetCrossRef Jiang, Y., Einav, I., Liu, M.: A thermodynamic treatment of partially saturated soils revealing the structure of effective stress. J. Mech. Phys. Solids 100, 131–146 (2017)MathSciNetCrossRef
64.
Zurück zum Zitat Ehlers, W., Ammann, M., Diebels, S.: h-adaptive FE methods applied to single- and multiphase problems. Int. J. Numer. Methods Eng. 54, 219–239 (2002)CrossRefMATH Ehlers, W., Ammann, M., Diebels, S.: h-adaptive FE methods applied to single- and multiphase problems. Int. J. Numer. Methods Eng. 54, 219–239 (2002)CrossRefMATH
65.
Zurück zum Zitat Ehlers, W., Ellsiepen, P.: Theoretical and numerical methods in environmental continuum mechanics based on the theory of porous media. In: Schrefler, B.A. (ed.) Environmental Geomechanics, CISM Courses and Lectures No. 417, pp. 1–81. Springer, Wien (2001) Ehlers, W., Ellsiepen, P.: Theoretical and numerical methods in environmental continuum mechanics based on the theory of porous media. In: Schrefler, B.A. (ed.) Environmental Geomechanics, CISM Courses and Lectures No. 417, pp. 1–81. Springer, Wien (2001)
66.
Zurück zum Zitat Boone, T.J., Ingraffea, A.R.: A numerical procedure for simulation of hydraulically driven fracture propagation in poroelastic media. Numer. Anal. Methods Geomech. 14, 27–47 (1990)CrossRef Boone, T.J., Ingraffea, A.R.: A numerical procedure for simulation of hydraulically driven fracture propagation in poroelastic media. Numer. Anal. Methods Geomech. 14, 27–47 (1990)CrossRef
67.
Zurück zum Zitat Boone, T.J., Detournay, E.: Response of a vertical hydraulic fracture intersecting a poroelastic formation bounded by semi-infinite impermeable elastic layers. Int. J. Rock Mech. Min. Sci. Geomech. 27, 189–197 (1990) Boone, T.J., Detournay, E.: Response of a vertical hydraulic fracture intersecting a poroelastic formation bounded by semi-infinite impermeable elastic layers. Int. J. Rock Mech. Min. Sci. Geomech. 27, 189–197 (1990)
68.
Zurück zum Zitat Detournay, E.: Propagation regimes of fluid-driven fractures in impermeable rocks. Int. J. Geomech. 4, 35–45 (2004)CrossRef Detournay, E.: Propagation regimes of fluid-driven fractures in impermeable rocks. Int. J. Geomech. 4, 35–45 (2004)CrossRef
69.
Zurück zum Zitat Heider, Y., Reiche, S., Siebert, P., Markert, B.: Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data. Eng. Fract. Mech. 202, 116–134 (2018)CrossRef Heider, Y., Reiche, S., Siebert, P., Markert, B.: Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data. Eng. Fract. Mech. 202, 116–134 (2018)CrossRef
70.
Zurück zum Zitat Mikelić, A., Wheeler, M.F., Wick, T.: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model. Simul. 13, 367–398 (2015)MathSciNetCrossRefMATH Mikelić, A., Wheeler, M.F., Wick, T.: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model. Simul. 13, 367–398 (2015)MathSciNetCrossRefMATH
71.
Zurück zum Zitat Markert, B., Heider, Y.: Coupled multi-field continuum methods for porous media fracture. In: Mehl, M., Bischoff, M., Schäfer, M. (eds.) Recent Trends in Computational Engineering-CE2014, pp. 167–180. Springer, Berlin (2015)CrossRef Markert, B., Heider, Y.: Coupled multi-field continuum methods for porous media fracture. In: Mehl, M., Bischoff, M., Schäfer, M. (eds.) Recent Trends in Computational Engineering-CE2014, pp. 167–180. Springer, Berlin (2015)CrossRef
72.
Zurück zum Zitat Pillai, U., Heider, Y., Markert, B.: A diffusive dynamic brittle fracture model for heterogeneous solids and porous materials with implementation using a user-element subroutine. Comput. Mater. Sci. 153, 36–47 (2018)CrossRef Pillai, U., Heider, Y., Markert, B.: A diffusive dynamic brittle fracture model for heterogeneous solids and porous materials with implementation using a user-element subroutine. Comput. Mater. Sci. 153, 36–47 (2018)CrossRef
73.
Zurück zum Zitat Remij, E.W., Remmers, J.J.C., Huyghe, J.M., Smeulders, D.M.J.: The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Eng. 286, 293–312 (2015)MathSciNetCrossRefMATH Remij, E.W., Remmers, J.J.C., Huyghe, J.M., Smeulders, D.M.J.: The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Eng. 286, 293–312 (2015)MathSciNetCrossRefMATH
74.
Zurück zum Zitat Ateshian, G.A.: Mixture theory for modeling biological tissues: Illustrations from articular cartilage. In: Holzapfel, G., Ogden, R.W. (eds.) Biomechanics: Trends in Modeling and Simulation, pp. 1–51. Springer, Cham (2017) Ateshian, G.A.: Mixture theory for modeling biological tissues: Illustrations from articular cartilage. In: Holzapfel, G., Ogden, R.W. (eds.) Biomechanics: Trends in Modeling and Simulation, pp. 1–51. Springer, Cham (2017)
75.
Zurück zum Zitat Ding, J., Remmers, J.J.C., Leszczynski, S., Huyghe, J.M.: Swelling driven crack propagation in large deformation in ionized hydrogel. J. Appl. Mech. 85, 021007 (2018)CrossRef Ding, J., Remmers, J.J.C., Leszczynski, S., Huyghe, J.M.: Swelling driven crack propagation in large deformation in ionized hydrogel. J. Appl. Mech. 85, 021007 (2018)CrossRef
76.
Zurück zum Zitat Huyghe, J.M., Janssen, J.D.: Thermo-chemo-electro-mechanical formulation of saturated charged porous solids. Transp. Porous Media 34, 129–141 (1999)CrossRef Huyghe, J.M., Janssen, J.D.: Thermo-chemo-electro-mechanical formulation of saturated charged porous solids. Transp. Porous Media 34, 129–141 (1999)CrossRef
77.
Zurück zum Zitat Huyghe, J.M., Molenaar, M.M., Baajens, F.P.: Poromechanics of compressible charged porous media using the theory of mixtures. J. Biomech. Eng. 129, 776–785 (2007)CrossRef Huyghe, J.M., Molenaar, M.M., Baajens, F.P.: Poromechanics of compressible charged porous media using the theory of mixtures. J. Biomech. Eng. 129, 776–785 (2007)CrossRef
78.
Zurück zum Zitat Huyghe, J.M., Wilson, W., Malakpoor, K.: On the thermodynamical admissibility of the triphasic theory of charged hydrated tissues. J. Biomech. Eng. 131, 044504 (2009)CrossRef Huyghe, J.M., Wilson, W., Malakpoor, K.: On the thermodynamical admissibility of the triphasic theory of charged hydrated tissues. J. Biomech. Eng. 131, 044504 (2009)CrossRef
79.
Zurück zum Zitat Huyghe, J.M.: Biaxial testing of canine annulus fibrosus tissue under changing salt concentrations. Anais da Academia Brasileira de Cincias 82, 145–151 (2010)CrossRef Huyghe, J.M.: Biaxial testing of canine annulus fibrosus tissue under changing salt concentrations. Anais da Academia Brasileira de Cincias 82, 145–151 (2010)CrossRef
80.
Zurück zum Zitat Kraaijeveld, F.: Propagating discontinuities in ionized porous media. Dissertation Thesis, TU of Eindhoven (2009) Kraaijeveld, F.: Propagating discontinuities in ionized porous media. Dissertation Thesis, TU of Eindhoven (2009)
81.
Zurück zum Zitat Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)CrossRef Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)CrossRef
82.
Zurück zum Zitat Mow, V.C., Guo, X.E.: Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu. Rev. Biomed. Eng. 4, 175–209 (2002)CrossRef Mow, V.C., Guo, X.E.: Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu. Rev. Biomed. Eng. 4, 175–209 (2002)CrossRef
83.
Zurück zum Zitat Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., Oldfield, E.H.: Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. 91, 2076–2080 (1994)CrossRef Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., Oldfield, E.H.: Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. 91, 2076–2080 (1994)CrossRef
84.
Zurück zum Zitat Fung, Y.-C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, Berlin (2013) Fung, Y.-C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, Berlin (2013)
85.
Zurück zum Zitat Goriely, A., Geers, M.G., Holzapfel, G.A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S., Squier, W., van Dommelen, J.A., Waters, S., Kuhl, E.: Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol 14, 931–965 (2015)CrossRef Goriely, A., Geers, M.G., Holzapfel, G.A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S., Squier, W., van Dommelen, J.A., Waters, S., Kuhl, E.: Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol 14, 931–965 (2015)CrossRef
86.
Zurück zum Zitat Holzapfel, G.A.: Biomechanics of soft tissue. Handb Mater Behav Model 3, 1049–1063 (2001) Holzapfel, G.A.: Biomechanics of soft tissue. Handb Mater Behav Model 3, 1049–1063 (2001)
87.
Zurück zum Zitat Miller, K., Chinzei, K.: Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30(11), 1115–1121 (1997)CrossRef Miller, K., Chinzei, K.: Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30(11), 1115–1121 (1997)CrossRef
88.
Zurück zum Zitat Linninger, A.A., Somayaji, M.R., Mekarsk, M., Zhang, L.: Prediction of convection enhanced drug delivery to the human brain. J. Theor. Biol. 250, 125–138 (2008)MathSciNetCrossRefMATH Linninger, A.A., Somayaji, M.R., Mekarsk, M., Zhang, L.: Prediction of convection enhanced drug delivery to the human brain. J. Theor. Biol. 250, 125–138 (2008)MathSciNetCrossRefMATH
89.
Zurück zum Zitat Ricken, T., Schwarz, A., Bluhm, J.: A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Comput. Mater. Sci. 39, 124–136 (2007)CrossRef Ricken, T., Schwarz, A., Bluhm, J.: A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Comput. Mater. Sci. 39, 124–136 (2007)CrossRef
90.
Zurück zum Zitat Sarntinoranont, M., Chen, X., Zhao, J., Mareci, T.M.: Computational model of interstitial transport in the spinal cord using diffusion tensor imaging. Ann. Biomed. Eng. 34, 1304–1321 (2006)CrossRef Sarntinoranont, M., Chen, X., Zhao, J., Mareci, T.M.: Computational model of interstitial transport in the spinal cord using diffusion tensor imaging. Ann. Biomed. Eng. 34, 1304–1321 (2006)CrossRef
91.
Zurück zum Zitat Støverud, K.H., Darcis, M., Helmig, R., Hassanizadeh, S.M.: Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transp. Porous Media 92, 119–143 (2011)MathSciNetCrossRef Støverud, K.H., Darcis, M., Helmig, R., Hassanizadeh, S.M.: Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transp. Porous Media 92, 119–143 (2011)MathSciNetCrossRef
Metadaten
Titel
Modelling and simulation methods applied to coupled problems in porous-media mechanics
verfasst von
Wolfgang Ehlers
Arndt Wagner
Publikationsdatum
20.02.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 4/2019
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01520-5

Weitere Artikel der Ausgabe 4/2019

Archive of Applied Mechanics 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.