Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

Modelling for Composite Load Model Including Participation of Static and Dynamic Load

verfasst von : Nitin Kumar Saxena, Ashwani Kumar

Erschienen in: Optimization of Power System Problems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is well recognized that voltage problems in power system is much affected through the connected loads. Different types of load can be modeled on their characteristics basis for computation of power system problems effectively. For different power system studies especially in the area of power system optimization problems that includes voltage control with reactive power compensation, transfer function \(\Delta Q{/}\Delta V\) of composite load is required. This chapter gives a detailed mathematical modelling to compute the reactive power response with small voltage perturbation for composite load. Composite load is defined as a combination of static and dynamic load model. To develop this composite load model, the exponential load is used as a static load model and induction motors are used as a dynamic load model in this chapter. To analyze the dynamics of induction motor load, fifth, third and first order model of induction motor are formulated and compared using differential equations solver in MATLAB coding. Since the decentralized areas have many small consumers which may consist large numbers of induction motors of small rating, it is not realistic to model either a single large rating unit or all small rating induction motors together that are placed in the system. In place of using single large rating induction motor a group of motors are being considered and then aggregate model of induction motor is developed using law of energy conservation and this aggregate model is used as a dynamic load model. Transfer function of composite load is derived in this chapter by successive derivation for exponential model of static load and for fifth and third order induction motor dynamic load model using state space model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Saxena, N.K.: Investigation of static and dynamic reactive power compensation and cost analysis in isolated hybrid power system. Unpublished doctoral dissertation, Electrical Engineering Department, National Institute of Technology, Kurukshetra, India (2016) Saxena, N.K.: Investigation of static and dynamic reactive power compensation and cost analysis in isolated hybrid power system. Unpublished doctoral dissertation, Electrical Engineering Department, National Institute of Technology, Kurukshetra, India (2016)
2.
Zurück zum Zitat Stojanovi, D.P., Korunovi, L.M., Milanovi, J.V.: Dynamic load modelling based on measurements in medium voltage distribution network. Electr. Power Syst. Res. 78, 228–238 (2008)CrossRef Stojanovi, D.P., Korunovi, L.M., Milanovi, J.V.: Dynamic load modelling based on measurements in medium voltage distribution network. Electr. Power Syst. Res. 78, 228–238 (2008)CrossRef
3.
Zurück zum Zitat Byoung, H.K., Kim, H., Lee, B.: Parameter estimation for the composite load model. J. Int. Council Electr. Eng. 2(2), 215–218 (2012)CrossRef Byoung, H.K., Kim, H., Lee, B.: Parameter estimation for the composite load model. J. Int. Council Electr. Eng. 2(2), 215–218 (2012)CrossRef
4.
Zurück zum Zitat Parveen, T.: Composite Load Model Decomposition: Induction Motor Contribution. Doctoral dissertation, Faculty of Built Environment and Engineering, School of Engineering Systems, Queensland University of Technology (2009) Parveen, T.: Composite Load Model Decomposition: Induction Motor Contribution. Doctoral dissertation, Faculty of Built Environment and Engineering, School of Engineering Systems, Queensland University of Technology (2009)
5.
Zurück zum Zitat Muriuki, J.K., Muriithi, C.M.: Comparison of aggregation of small and large induction motors for power system stability study. Global Eng. Technol. Rev. 3(2) (2013) Muriuki, J.K., Muriithi, C.M.: Comparison of aggregation of small and large induction motors for power system stability study. Global Eng. Technol. Rev. 3(2) (2013)
6.
Zurück zum Zitat Aree, P.: Aggregating method of induction motor group using energy conservation law. ECTI Trans. Electr. Eng. Electr. Commun. 12(1), 2014 (2014) Aree, P.: Aggregating method of induction motor group using energy conservation law. ECTI Trans. Electr. Eng. Electr. Commun. 12(1), 2014 (2014)
7.
Zurück zum Zitat Performance, task force on load representation for dynamics. Load representation for dynamic performance analysis. IEEE Trans. Power Syst. 8, 472–482 (1993) Performance, task force on load representation for dynamics. Load representation for dynamic performance analysis. IEEE Trans. Power Syst. 8, 472–482 (1993)
8.
Zurück zum Zitat Kundur, P.: Power System Stability and Control. Tata-Mcgraw-Hill, India (2006) Kundur, P.: Power System Stability and Control. Tata-Mcgraw-Hill, India (2006)
9.
Zurück zum Zitat Murty, V.V.S.N., Kumar, A.: Comparison of optimal capacitor placement methods in radial distribution system with load growth and ZIP load model. Front. Energy 7, 197–213 (2013)CrossRef Murty, V.V.S.N., Kumar, A.: Comparison of optimal capacitor placement methods in radial distribution system with load growth and ZIP load model. Front. Energy 7, 197–213 (2013)CrossRef
10.
Zurück zum Zitat Momoh, J.A.: Electrical Power System Application of Optimization. Marcel Dekker Inc, New York (2001) Momoh, J.A.: Electrical Power System Application of Optimization. Marcel Dekker Inc, New York (2001)
11.
Zurück zum Zitat Saxena, N.K., Kumar, A.: Estimation of composite load model with aggregate induction motor dynamic load for an isolated hybrid power system. Front. Energy 9(4), 472–485 (2015)CrossRef Saxena, N.K., Kumar, A.: Estimation of composite load model with aggregate induction motor dynamic load for an isolated hybrid power system. Front. Energy 9(4), 472–485 (2015)CrossRef
12.
Zurück zum Zitat Craven, R.H., Michael, M.R.: Load representations in the dynamic solution of the Queensland power system. J. Electr. Electron. Eng. 3(1), 1–7 (1983) Craven, R.H., Michael, M.R.: Load representations in the dynamic solution of the Queensland power system. J. Electr. Electron. Eng. 3(1), 1–7 (1983)
13.
Zurück zum Zitat Mauricio, W., Semiyen, A.: Effect of load characteristics on the dynamic stability of power system. IEEE Trans. Power Apparatus Syst. 91, 2295–2304 (1972)CrossRef Mauricio, W., Semiyen, A.: Effect of load characteristics on the dynamic stability of power system. IEEE Trans. Power Apparatus Syst. 91, 2295–2304 (1972)CrossRef
14.
Zurück zum Zitat Milanovic, J.V., Hiskens, I.A.: Effect of load dynamics on power system damping. In: R. IEEE PEs Summer Meeting, vol. 94. SM 578-5 PWRS (1994), San Francisco (1994) Milanovic, J.V., Hiskens, I.A.: Effect of load dynamics on power system damping. In: R. IEEE PEs Summer Meeting, vol. 94. SM 578-5 PWRS (1994), San Francisco (1994)
15.
Zurück zum Zitat Karlsson, D., Hill, D.J.: Modelling and identification of non linear dynamics loads in power system. IEEE Trans. Power Syst. 9(1), 157–166 (1994)CrossRef Karlsson, D., Hill, D.J.: Modelling and identification of non linear dynamics loads in power system. IEEE Trans. Power Syst. 9(1), 157–166 (1994)CrossRef
16.
Zurück zum Zitat Fahmy, O.M., Attia, A.S., Badr, M.A.L.: A novel analytical model for electrical loads comprising static and dynamic components. Electr. Power Syst. Res. 77, 1249–1256 (2007)CrossRef Fahmy, O.M., Attia, A.S., Badr, M.A.L.: A novel analytical model for electrical loads comprising static and dynamic components. Electr. Power Syst. Res. 77, 1249–1256 (2007)CrossRef
17.
Zurück zum Zitat Son, S.E., Lee, S.H., Choi, D.H., Song, Y.B., Park, J.D., Kwon, Y.H., Hur, K., Park, J.W.: Improvement of composite load modelling based on parameter sensitivity and dependency analyses. IEEE Trans. Power Syst. 29(1), 242–250 (2014)CrossRef Son, S.E., Lee, S.H., Choi, D.H., Song, Y.B., Park, J.D., Kwon, Y.H., Hur, K., Park, J.W.: Improvement of composite load modelling based on parameter sensitivity and dependency analyses. IEEE Trans. Power Syst. 29(1), 242–250 (2014)CrossRef
18.
Zurück zum Zitat Saxena, N.K., Kumar, A.: Reactive power control in decentralized hybrid power system with STATCOM Using GA, ANN and ANFIS methods. Int. J. Electr. Power Energy Syst. 83, 175–187 (2016)CrossRef Saxena, N.K., Kumar, A.: Reactive power control in decentralized hybrid power system with STATCOM Using GA, ANN and ANFIS methods. Int. J. Electr. Power Energy Syst. 83, 175–187 (2016)CrossRef
19.
Zurück zum Zitat Parveen, T., Ledwich, G.: Decomposition of aggregated load: finding induction motor fraction in real load. In: Proceedings of Australasian Universities Power Engineering Conference, Sydney (2008) Parveen, T., Ledwich, G.: Decomposition of aggregated load: finding induction motor fraction in real load. In: Proceedings of Australasian Universities Power Engineering Conference, Sydney (2008)
20.
Zurück zum Zitat Stanley, H.C.: An analysis of induction machine. AIEE Trans. 57 (1938) Stanley, H.C.: An analysis of induction machine. AIEE Trans. 57 (1938)
21.
Zurück zum Zitat Krause, P.C.: Analysis of Electric Machinery. McGraw-Hill Book Company, New York (1986) Krause, P.C.: Analysis of Electric Machinery. McGraw-Hill Book Company, New York (1986)
22.
Zurück zum Zitat Singh, G.K.: Self-excited induction generator research—a survey. Electr. Power Syst. Res. 69, 107–114 (2004)CrossRef Singh, G.K.: Self-excited induction generator research—a survey. Electr. Power Syst. Res. 69, 107–114 (2004)CrossRef
23.
Zurück zum Zitat Rusnok, S., Sobota, P., Slivka, M., Svoboda, P.: Assessment transients during starting of induction motor in MATLAB Simulink and verification by measurement. Adv. Res. Sci. Areas (2012) Rusnok, S., Sobota, P., Slivka, M., Svoboda, P.: Assessment transients during starting of induction motor in MATLAB Simulink and verification by measurement. Adv. Res. Sci. Areas (2012)
24.
Zurück zum Zitat Wang, K., Chiasson, J., Bodson, M., Tolbert, L.M.: A nonlinear least-squares approach for identification of the induction motor parameters. In: Proceedings of 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas (2004) Wang, K., Chiasson, J., Bodson, M., Tolbert, L.M.: A nonlinear least-squares approach for identification of the induction motor parameters. In: Proceedings of 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas (2004)
25.
Zurück zum Zitat Lehtla, T.: Parameter identification of an induction motor using fuzzy logic controller. In: Proceedings of PEMC, Budapest, part 3, pp. 292–296 (1996) Lehtla, T.: Parameter identification of an induction motor using fuzzy logic controller. In: Proceedings of PEMC, Budapest, part 3, pp. 292–296 (1996)
26.
Zurück zum Zitat Hiskens, I.A., Milanovic, J.V.: Load modeling in studies of power system damping. IEEE Trans. Power Syst. 10(4) (1995)CrossRef Hiskens, I.A., Milanovic, J.V.: Load modeling in studies of power system damping. IEEE Trans. Power Syst. 10(4) (1995)CrossRef
27.
Zurück zum Zitat Boldea, I., Nasar, S.A.: The Induction Machine Handbook. CRC press (2002) Boldea, I., Nasar, S.A.: The Induction Machine Handbook. CRC press (2002)
28.
Zurück zum Zitat Saxena, N., Kumar, A.: Load modelling interaction on hybrid power system using STATCOM. In: Proceedings of IEEE INDICON 2010, Kolkata, India (2010) Saxena, N., Kumar, A.: Load modelling interaction on hybrid power system using STATCOM. In: Proceedings of IEEE INDICON 2010, Kolkata, India (2010)
29.
Zurück zum Zitat Pedra, J., Sainz, L.: Parameter estimation of squirrel-cage induction motors without torque measurements. IEE Proc.-Electr. Power Appl. 153(2) (2006)CrossRef Pedra, J., Sainz, L.: Parameter estimation of squirrel-cage induction motors without torque measurements. IEE Proc.-Electr. Power Appl. 153(2) (2006)CrossRef
30.
Zurück zum Zitat Izosimov, D.B.: Experimental determination of parameters for an induction motor with a short circuited rotor. Russ. Electr. Eng. 84(2), 81–88 (2013)CrossRef Izosimov, D.B.: Experimental determination of parameters for an induction motor with a short circuited rotor. Russ. Electr. Eng. 84(2), 81–88 (2013)CrossRef
31.
Zurück zum Zitat Ilina, I.D.: Experimental determination of moment of inertia and mechanical losses vs. speed, in electrical machines. In: Proceedings of The 7th International Symposium on Advanced Topics in Electrical Engineering, U.P.B Bucharest (2011) Ilina, I.D.: Experimental determination of moment of inertia and mechanical losses vs. speed, in electrical machines. In: Proceedings of The 7th International Symposium on Advanced Topics in Electrical Engineering, U.P.B Bucharest (2011)
32.
Zurück zum Zitat Pedra, J.: Estimation of typical squirrel-cage induction motor parameters for dynamic performance simulation. IEE Proc.-Gener. Transm. Distrib. 153(2), 137–146 (2006)CrossRef Pedra, J.: Estimation of typical squirrel-cage induction motor parameters for dynamic performance simulation. IEE Proc.-Gener. Transm. Distrib. 153(2), 137–146 (2006)CrossRef
33.
Zurück zum Zitat Zhang, Y., Zhang, W., Chu, X., Liu, Y.: Real-time optimal voltage control using measurement based. Electr. Power Syst. Res. 116, 293–300 (2014)CrossRef Zhang, Y., Zhang, W., Chu, X., Liu, Y.: Real-time optimal voltage control using measurement based. Electr. Power Syst. Res. 116, 293–300 (2014)CrossRef
34.
Zurück zum Zitat Saxena, N.K., Kumar, A.: Analytical comparison of static and dynamic reactive power compensation in isolated wind diesel system using dynamic load interaction model. Electr. Power Compon. Syst. 53(5), 508–519 (2015)CrossRef Saxena, N.K., Kumar, A.: Analytical comparison of static and dynamic reactive power compensation in isolated wind diesel system using dynamic load interaction model. Electr. Power Compon. Syst. 53(5), 508–519 (2015)CrossRef
35.
Zurück zum Zitat Choi, B.K., Chiang, H.D., Li, Y., Chen, Y.T., Huang, D.H., Lauby, M.G.: Development of composite load models of power systems using on line measurement data. J. Electr. Eng. Technol. 1(2), 161–169 (2006)CrossRef Choi, B.K., Chiang, H.D., Li, Y., Chen, Y.T., Huang, D.H., Lauby, M.G.: Development of composite load models of power systems using on line measurement data. J. Electr. Eng. Technol. 1(2), 161–169 (2006)CrossRef
Metadaten
Titel
Modelling for Composite Load Model Including Participation of Static and Dynamic Load
verfasst von
Nitin Kumar Saxena
Ashwani Kumar
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-34050-6_1