Skip to main content

2016 | OriginalPaper | Buchkapitel

4. Modelling Human Shoulder and Elbow

verfasst von : Shane (S.Q.) Xie

Erschienen in: Advanced Robotics for Medical Rehabilitation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The human upper limb can be considered as a serial manipulator with three segments connected through three joints. The wrist joint connects the hand to the forearm, the elbow joint connects the forearm to the upper arm and the shoulder joint connects the upper arm to the torso.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Tondu, Estimating shoulder-complex mobility. Appl. Bion. Biomech. 4, 19–29 (2007)CrossRef B. Tondu, Estimating shoulder-complex mobility. Appl. Bion. Biomech. 4, 19–29 (2007)CrossRef
2.
Zurück zum Zitat J. Yang, K. Abdel-Malek, K. Nebel, Reach envelope of a 9-degree-of-freedom model of the upper extremity. Int. J. Robot. Autom. 20, 240–259 (2005) J. Yang, K. Abdel-Malek, K. Nebel, Reach envelope of a 9-degree-of-freedom model of the upper extremity. Int. J. Robot. Autom. 20, 240–259 (2005)
3.
Zurück zum Zitat F.C.T. Van Der Helm, Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J. Biomech. 27, 527–550 (1994)CrossRef F.C.T. Van Der Helm, Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J. Biomech. 27, 527–550 (1994)CrossRef
4.
Zurück zum Zitat T. Nef, M. Guidali, R. Riener, ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bion. Biomech. 6, 127–142 (2009)CrossRef T. Nef, M. Guidali, R. Riener, ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bion. Biomech. 6, 127–142 (2009)CrossRef
5.
Zurück zum Zitat C. Carignan, J. Tang, S. Roderick, Development of an exoskeleton haptic interface for virtual task training, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 3697–3702 C. Carignan, J. Tang, S. Roderick, Development of an exoskeleton haptic interface for virtual task training, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 3697–3702
6.
Zurück zum Zitat Y. Ren, H.S. Park, L.Q. Zhang, Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation, in IEEE International Conference on Rehabilitation Robotics, 2009, pp. 761–765 Y. Ren, H.S. Park, L.Q. Zhang, Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation, in IEEE International Conference on Rehabilitation Robotics, 2009, pp. 761–765
7.
Zurück zum Zitat S.J. Ball, I.E. Brown, S.H. Scott, MEDARM: a rehabilitation robot with 5DOF at the shoulder complex, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2007 S.J. Ball, I.E. Brown, S.H. Scott, MEDARM: a rehabilitation robot with 5DOF at the shoulder complex, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2007
8.
Zurück zum Zitat J.C. Perry, J. Rosen, S. Burns, Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12, 408–417 (2007)CrossRef J.C. Perry, J. Rosen, S. Burns, Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12, 408–417 (2007)CrossRef
9.
Zurück zum Zitat D. Naidu, R. Stopforth, G. Bright, S. Davrajh, A 7 DOF exoskeleton arm: shoulder, elbow, wrist and hand mechanism for assistance to upper limb disabled individuals, in IEEE AFRICON Conference, 2011 D. Naidu, R. Stopforth, G. Bright, S. Davrajh, A 7 DOF exoskeleton arm: shoulder, elbow, wrist and hand mechanism for assistance to upper limb disabled individuals, in IEEE AFRICON Conference, 2011
10.
Zurück zum Zitat G.L. Long, R.P. Paul, W.D. Fisher, Hamilton wrist: a four-revolute-joint spherical wrist without singularities, in IEEE International Conference on Robotics and Automation, 1989, pp. 902–907 G.L. Long, R.P. Paul, W.D. Fisher, Hamilton wrist: a four-revolute-joint spherical wrist without singularities, in IEEE International Conference on Robotics and Automation, 1989, pp. 902–907
11.
Zurück zum Zitat C.R. Carignan, R.D. Howard, A skew-axis design for a 4-joint revolute wrist, in IEEE International Conference on Robotics and Automation, 2002, pp. 3636–3642 C.R. Carignan, R.D. Howard, A skew-axis design for a 4-joint revolute wrist, in IEEE International Conference on Robotics and Automation, 2002, pp. 3636–3642
12.
Zurück zum Zitat D. Chablat, J. Angeles, The computation of all 4R serial spherical wrists with an isotropic architecture. Trans. ASME J. Mech. Des. 125, 275–280 (2003)CrossRef D. Chablat, J. Angeles, The computation of all 4R serial spherical wrists with an isotropic architecture. Trans. ASME J. Mech. Des. 125, 275–280 (2003)CrossRef
13.
Zurück zum Zitat K. Farhang, Y.S. Zargar, Design of spherical 4R mechanisms: function generation for the entire motion cycle. Trans. ASME J. Mech. Des. 121, 521–528 (1999)CrossRef K. Farhang, Y.S. Zargar, Design of spherical 4R mechanisms: function generation for the entire motion cycle. Trans. ASME J. Mech. Des. 121, 521–528 (1999)CrossRef
14.
Zurück zum Zitat J. Denavit, R.S. Hartenberg, A kinematic notation for lower pair mechanisms based on matrices. ASME J. Appl. Mech. 23, 215–221 (1955)MathSciNetMATH J. Denavit, R.S. Hartenberg, A kinematic notation for lower pair mechanisms based on matrices. ASME J. Appl. Mech. 23, 215–221 (1955)MathSciNetMATH
15.
Zurück zum Zitat A. Aristidou, J. Lasenby, FABRIK: a fast, iterative solver for the Inverse Kinematics problem. Graph. Models 73, 243–260 (2011)CrossRef A. Aristidou, J. Lasenby, FABRIK: a fast, iterative solver for the Inverse Kinematics problem. Graph. Models 73, 243–260 (2011)CrossRef
16.
Zurück zum Zitat J.B. Kuipers, Quaternions and rotation sequences: a primer with applications to orbits, aerospace and virtual reality (Princeton University Press, Princeton, 2002)MATH J.B. Kuipers, Quaternions and rotation sequences: a primer with applications to orbits, aerospace and virtual reality (Princeton University Press, Princeton, 2002)MATH
17.
Zurück zum Zitat X. Wang, M. Maurin, F. Mazet, N.D.C. Maia, K. Voinot, J.P. Verriest, M. Fayet, Three-dimensional modelling of the motion range of axial rotation of the upper arm. J. Biomech. 31, 899–908 (1998)CrossRef X. Wang, M. Maurin, F. Mazet, N.D.C. Maia, K. Voinot, J.P. Verriest, M. Fayet, Three-dimensional modelling of the motion range of axial rotation of the upper arm. J. Biomech. 31, 899–908 (1998)CrossRef
18.
Zurück zum Zitat J. Pau, H. Saini, S. Xie, A. Pullan, G. Mallinson, An emg-driven neuromuscular interface for human elbow joint, in 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Tokyo, Sept 2010, pp. 156–161 J. Pau, H. Saini, S. Xie, A. Pullan, G. Mallinson, An emg-driven neuromuscular interface for human elbow joint, in 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Tokyo, Sept 2010, pp. 156–161
19.
Zurück zum Zitat J.W.L. Pau, S.S.Q. Xie, A.J. Pullan, Neuromuscular interfacing: establishing an emg-driven model for the human elbow joint. IEEE Trans. Biomed. Eng. 59(9), 2586–2593 (2012)CrossRef J.W.L. Pau, S.S.Q. Xie, A.J. Pullan, Neuromuscular interfacing: establishing an emg-driven model for the human elbow joint. IEEE Trans. Biomed. Eng. 59(9), 2586–2593 (2012)CrossRef
20.
Zurück zum Zitat A.V. Hill, The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. Series B Biol. Sci. 126(843), 136–195 (1938)CrossRef A.V. Hill, The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. Series B Biol. Sci. 126(843), 136–195 (1938)CrossRef
21.
Zurück zum Zitat Q. Shao, D.N. Bassett, K. Manal, T.S. Buchanan, An emg-driven model to estimate muscle forces and joint moments in stroke patients. Comput. Biol. Med. 39(12), 1083–1088 (2009)CrossRef Q. Shao, D.N. Bassett, K. Manal, T.S. Buchanan, An emg-driven model to estimate muscle forces and joint moments in stroke patients. Comput. Biol. Med. 39(12), 1083–1088 (2009)CrossRef
22.
Zurück zum Zitat M. Sartori, D. Lloyd, M. Reggiani, and E. Pagello, A stiff tendon neuromusculoskeletal model of the knee, in IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), Tokyo, Nov. 2009, pp. 132–138 M. Sartori, D. Lloyd, M. Reggiani, and E. Pagello, A stiff tendon neuromusculoskeletal model of the knee, in IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), Tokyo, Nov. 2009, pp. 132–138
23.
Zurück zum Zitat T. Buchanan, D. Lloyd, K. Manal, T. Besier, Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20(4), 367–395 (2004)CrossRef T. Buchanan, D. Lloyd, K. Manal, T. Besier, Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20(4), 367–395 (2004)CrossRef
24.
Zurück zum Zitat M. Vilimek, Musculotendon forces derived by different muscle models. Acta Bioeng. Biomech. 9(2), 41–47 (2007) M. Vilimek, Musculotendon forces derived by different muscle models. Acta Bioeng. Biomech. 9(2), 41–47 (2007)
25.
Zurück zum Zitat G.F. Elliott, C.R. Worthington, Muscle contraction: viscous-like frictional forces and the impulsive model. Int. J. Biol. Macromol. 27(5), 327–332 (2000)CrossRef G.F. Elliott, C.R. Worthington, Muscle contraction: viscous-like frictional forces and the impulsive model. Int. J. Biol. Macromol. 27(5), 327–332 (2000)CrossRef
26.
Zurück zum Zitat L. Schutte, M. Rodgers, F. Zajac, R. Glaser, Improving the efficacy of electrical stimulation-induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model. IEEE Trans. Rehabil. Eng. 1(2), 109–125 (1993)CrossRef L. Schutte, M. Rodgers, F. Zajac, R. Glaser, Improving the efficacy of electrical stimulation-induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model. IEEE Trans. Rehabil. Eng. 1(2), 109–125 (1993)CrossRef
27.
Zurück zum Zitat A. Martin, L. Martin, B. Morlon, Theoretical and experimental behaviour of the muscle viscosity coefficient during maximal concentric actions. Eur. J. Appl. Physiol. 69(6), 539–544 (1994)CrossRef A. Martin, L. Martin, B. Morlon, Theoretical and experimental behaviour of the muscle viscosity coefficient during maximal concentric actions. Eur. J. Appl. Physiol. 69(6), 539–544 (1994)CrossRef
28.
Zurück zum Zitat T.K. Koo, A.F. Mak, Feasibility of using emg driven neuromusculoskeletal model for prediction of dynamic movement of the elbow. J. Electromyogr. Kinesiol. 15(1), 12–26 (2005)CrossRef T.K. Koo, A.F. Mak, Feasibility of using emg driven neuromusculoskeletal model for prediction of dynamic movement of the elbow. J. Electromyogr. Kinesiol. 15(1), 12–26 (2005)CrossRef
29.
Zurück zum Zitat K. An, B.F. Morrey, E. Chao, Carrying angle of the human elbow joint. J. Orthop. Res. 1(4), 369–378 (1983)CrossRef K. An, B.F. Morrey, E. Chao, Carrying angle of the human elbow joint. J. Orthop. Res. 1(4), 369–378 (1983)CrossRef
30.
Zurück zum Zitat D. Kistemaker, A. Van Soest, M. Bobbert, A model of open-loop control of equilibrium position and stiffness of the human elbow joint. Biol. Cybern. 96(3), 341–350 (2007)CrossRefMATH D. Kistemaker, A. Van Soest, M. Bobbert, A model of open-loop control of equilibrium position and stiffness of the human elbow joint. Biol. Cybern. 96(3), 341–350 (2007)CrossRefMATH
31.
Zurück zum Zitat S. Stroeve, Impedance characteristics of a neuromusculoskeletal model of the human arm i. posture control. Biol. Cybern. 81(5), 475–494 (1999)CrossRefMATH S. Stroeve, Impedance characteristics of a neuromusculoskeletal model of the human arm i. posture control. Biol. Cybern. 81(5), 475–494 (1999)CrossRefMATH
32.
Zurück zum Zitat A. Desplantez, C. Cornu, F. Goubel, Viscous properties of human muscle during contraction. J. Biomech. 32(6), 555–562 (1999)CrossRef A. Desplantez, C. Cornu, F. Goubel, Viscous properties of human muscle during contraction. J. Biomech. 32(6), 555–562 (1999)CrossRef
33.
Zurück zum Zitat M.A. Lemay, P.E. Crago, A dynamic model for simulating movements of the elbow, forearm, and wrist. J. Biomech. 29(10), 1319–1330 (1996)CrossRef M.A. Lemay, P.E. Crago, A dynamic model for simulating movements of the elbow, forearm, and wrist. J. Biomech. 29(10), 1319–1330 (1996)CrossRef
34.
Zurück zum Zitat J.M. Winters, L. Stark, Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans. Biomed. Eng. 32(10), 826–839 (1985)CrossRef J.M. Winters, L. Stark, Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans. Biomed. Eng. 32(10), 826–839 (1985)CrossRef
35.
Zurück zum Zitat A. Au, R. Kirsch, Emg-based prediction of shoulder and elbow kinematics in able-bodied and spinal cord injured individuals. IEEE Trans. Rehabil. Eng. 8(4), 471–480 (2000)CrossRef A. Au, R. Kirsch, Emg-based prediction of shoulder and elbow kinematics in able-bodied and spinal cord injured individuals. IEEE Trans. Rehabil. Eng. 8(4), 471–480 (2000)CrossRef
36.
Zurück zum Zitat R. Merletti, P. di Torino, Standards for reporting EMG data. Int. Soc. Electrophysiol. Kinesiol. (1999) R. Merletti, P. di Torino, Standards for reporting EMG data. Int. Soc. Electrophysiol. Kinesiol. (1999)
37.
Zurück zum Zitat T. Farrell, R. Weir, The optimal controller delay for myoelectric prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 111–118 (2007)CrossRef T. Farrell, R. Weir, The optimal controller delay for myoelectric prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 111–118 (2007)CrossRef
38.
Zurück zum Zitat T. Lenzi, S.M.M. De Rossi, N. Vitiello, M.C. Carrozza, Proportional emg control for upper-limb powered exoskeletons, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Boston, Sept. 2011, pp. 628–631 T. Lenzi, S.M.M. De Rossi, N. Vitiello, M.C. Carrozza, Proportional emg control for upper-limb powered exoskeletons, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Boston, Sept. 2011, pp. 628–631
39.
Zurück zum Zitat C. De Luca, L. Donald Gilmore, M. Kuznetsov, S. Roy, Filtering the surface emg signal: Movement artifact and baseline noise contamination, J. Biomech. 43(8), 1573–1579 (2010) C. De Luca, L. Donald Gilmore, M. Kuznetsov, S. Roy, Filtering the surface emg signal: Movement artifact and baseline noise contamination, J. Biomech. 43(8), 1573–1579 (2010)
40.
Zurück zum Zitat K. Manal, T. Buchanan, Use of an emg-driven biomechanical model to study virtual injuries. Med. Sci. Sports Exerc. 37(11), 1917–1923 (2005)CrossRef K. Manal, T. Buchanan, Use of an emg-driven biomechanical model to study virtual injuries. Med. Sci. Sports Exerc. 37(11), 1917–1923 (2005)CrossRef
41.
Zurück zum Zitat E. Cavallaro, J. Rosen, J. Perry, S. Burns, B. Hannaford, Hill-based model as a myoprocessor for a neural controlled powered exoskeleton arm—parameters optimization, in Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA), Apr 2005, pp. 4514–4519 E. Cavallaro, J. Rosen, J. Perry, S. Burns, B. Hannaford, Hill-based model as a myoprocessor for a neural controlled powered exoskeleton arm—parameters optimization, in Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA), Apr 2005, pp. 4514–4519
42.
Zurück zum Zitat J.R. Cram, G.S. Kasman, J. Holtz, Introduction to Surface Electromyography (Aspen Publishers Inc., Gaithersburg, Maryland, 1998) J.R. Cram, G.S. Kasman, J. Holtz, Introduction to Surface Electromyography (Aspen Publishers Inc., Gaithersburg, Maryland, 1998)
43.
Zurück zum Zitat C.R. Reeves, Handbook of Metaheuristics, vol. 146, Chap. 5 Genetic Algorithms (Springer Link, 2010), pp. 109–139 C.R. Reeves, Handbook of Metaheuristics, vol. 146, Chap. 5 Genetic Algorithms (Springer Link, 2010), pp. 109–139
44.
Zurück zum Zitat P. Bajpai, M. Kumar, Genetic algorithm—an approach to solve global optimisation problems. Indian J. Comput. Sci. Eng. 1(3), 199–206 (2010) P. Bajpai, M. Kumar, Genetic algorithm—an approach to solve global optimisation problems. Indian J. Comput. Sci. Eng. 1(3), 199–206 (2010)
Metadaten
Titel
Modelling Human Shoulder and Elbow
verfasst von
Shane (S.Q.) Xie
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-19896-5_4

Neuer Inhalt