Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 5/2018

16.07.2018

Modelling of Blast Furnace with Respective Chemical Reactions in Coke and Ore Burden Layers

verfasst von: Xiaobing Yu, Yansong Shen

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ironmaking blast furnace (BF) is an efficient chemical reactor for producing liquid iron from solid iron ore, where the solids of coke and iron ore are charged in alternative layers and different chemical reactions occur in the two solid layers as they descend. Such respective reacting burden layers have not been considered explicitly in the previous BF models. In this article, a mathematical model based on multi-fluid theory is developed for describing the multiphase reacting flows considering the respective reacting burden layers. Then, this model is applied to a BF, covering the area from the burden surface at the furnace top to the liquid surface above the hearth, to describe the inner states of a BF in terms of the multiphase flows, temperature distribution and reduction process. The results show that some key important features in the layered burden with respective chemical reactions are captured, including fluctuating iso-lines in terms of gas flow and thermochemical behaviours; particularly the latter cannot be well captured in the previous BF models. The temperature difference between gas–solid phases is found to be larger near the raceway, at the cohesive zone and at the furnace top, and the thermal reserved zone can be identified near the shaft. Three chemical reserve zones of hematite, magnetite and wustite can also be observed near the stockline, in the shaft near the wall and near centre, respectively. Inside each reserve zone, the corresponding ferrous oxides stay constantly high in alternative layers; the overall performance indicators including gas utilization efficiency and reduction degree also stay stable in an alternative-layered structure. This model provides a cost-effective tool to investigate the BF in-furnace process and optimize BF operation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Omori: Blast Furnace Phenomena and Modelling, Elsevier Applied Science, London, 1987, p. 498. Y. Omori: Blast Furnace Phenomena and Modelling, Elsevier Applied Science, London, 1987, p. 498.
2.
Zurück zum Zitat Y. Shimomura, K. Nishikawa, S. Arino, T. Katayama, Y. Hida and T. Isoyama: Tetsu-to-Hagané, 1976, vol. 62, pp. 547-58.CrossRef Y. Shimomura, K. Nishikawa, S. Arino, T. Katayama, Y. Hida and T. Isoyama: Tetsu-to-Hagané, 1976, vol. 62, pp. 547-58.CrossRef
3.
Zurück zum Zitat M. Sasaki, K. Ono, A. Suzuki, Y. Okuno, K. Yoshizawa and T. Nakamura: Tetsu-to-Hagané, 1976, vol. 62, pp. 559-69.CrossRef M. Sasaki, K. Ono, A. Suzuki, Y. Okuno, K. Yoshizawa and T. Nakamura: Tetsu-to-Hagané, 1976, vol. 62, pp. 559-69.CrossRef
4.
Zurück zum Zitat K. Sasaki, M. Hatano, M. Watanabe, T. Shimoda, K. Yokotani, T. Ito and T. Yakoi: Tetsu-to-Hagané, 1976, vol. 62, pp. 580-91.CrossRef K. Sasaki, M. Hatano, M. Watanabe, T. Shimoda, K. Yokotani, T. Ito and T. Yakoi: Tetsu-to-Hagané, 1976, vol. 62, pp. 580-91.CrossRef
5.
Zurück zum Zitat K. Kojima, T. Nist, T. Yamaguchi, H. Nakama and S. Ida: Tetsu-to-Hagané, 1976, vol. 62, pp. 570-9.CrossRef K. Kojima, T. Nist, T. Yamaguchi, H. Nakama and S. Ida: Tetsu-to-Hagané, 1976, vol. 62, pp. 570-9.CrossRef
6.
Zurück zum Zitat K. Kanbara, T. Hagiwara, A. Shigemi, S. Kondo, Y. Kanayama, K. Wakabayashi and N. Hiramoto: Tetsu-to-Hagané, 1976, vol. 62, pp. 535-46.CrossRef K. Kanbara, T. Hagiwara, A. Shigemi, S. Kondo, Y. Kanayama, K. Wakabayashi and N. Hiramoto: Tetsu-to-Hagané, 1976, vol. 62, pp. 535-46.CrossRef
7.
Zurück zum Zitat X. F. Dong, A. B. Yu, J. Yagi and P. Zulli: ISIJ Int., 2007, vol. 47, pp. 1553-70.CrossRef X. F. Dong, A. B. Yu, J. Yagi and P. Zulli: ISIJ Int., 2007, vol. 47, pp. 1553-70.CrossRef
8.
Zurück zum Zitat S. Ueda, S. Natsui, H. Nogami, J. Yagi and T. Ariyama: ISIJ Int., 2010, vol. 50, pp. 914-23.CrossRef S. Ueda, S. Natsui, H. Nogami, J. Yagi and T. Ariyama: ISIJ Int., 2010, vol. 50, pp. 914-23.CrossRef
9.
Zurück zum Zitat S. B. Kuang, Z. Y. Li and A. B. Yu: Steel Res. Int., 2018, vol. 89, pp. 1-25.CrossRef S. B. Kuang, Z. Y. Li and A. B. Yu: Steel Res. Int., 2018, vol. 89, pp. 1-25.CrossRef
10.
Zurück zum Zitat P. R. Austin, H. Nogami and J. Yagi: ISIJ Int., 1997, vol. 37, pp. 748-55.CrossRef P. R. Austin, H. Nogami and J. Yagi: ISIJ Int., 1997, vol. 37, pp. 748-55.CrossRef
11.
Zurück zum Zitat H. Nogami, M. S. Chu and J. Yagi: Comput. Chem. Eng., 2005, vol. 29, pp. 2438-48.CrossRef H. Nogami, M. S. Chu and J. Yagi: Comput. Chem. Eng., 2005, vol. 29, pp. 2438-48.CrossRef
12.
Zurück zum Zitat X. F. Dong, A. B. Yu, S. J. Chew and P. Zulli: Metall. Mater. Trans. B, 2010, vol. 41, pp. 330-49.CrossRef X. F. Dong, A. B. Yu, S. J. Chew and P. Zulli: Metall. Mater. Trans. B, 2010, vol. 41, pp. 330-49.CrossRef
13.
Zurück zum Zitat D. Fu, Y. Chen, Y. F. Zhao, J. D’Alessio, K. J. Ferron and C. Q. Zhou: Appl. Therm. Eng., 2014, vol. 66, pp. 298-308.CrossRef D. Fu, Y. Chen, Y. F. Zhao, J. D’Alessio, K. J. Ferron and C. Q. Zhou: Appl. Therm. Eng., 2014, vol. 66, pp. 298-308.CrossRef
14.
Zurück zum Zitat Y. S. Shen, B. Y. Guo, S. Chew, P. Austin and A. B. Yu: Metall. Mater. Trans. B, 2015, vol. 46, pp. 432-48.CrossRef Y. S. Shen, B. Y. Guo, S. Chew, P. Austin and A. B. Yu: Metall. Mater. Trans. B, 2015, vol. 46, pp. 432-48.CrossRef
15.
Zurück zum Zitat J. Yagi, K. Taakeda and Y. Omori: Trans. Iron Steel Inst. Japan, 1982, vol. 22, pp. 884-92.CrossRef J. Yagi, K. Taakeda and Y. Omori: Trans. Iron Steel Inst. Japan, 1982, vol. 22, pp. 884-92.CrossRef
16.
Zurück zum Zitat P. R. Austin, H. Nogami and J. Yagi: ISIJ Int., 1997, vol. 37, pp. 458-67.CrossRef P. R. Austin, H. Nogami and J. Yagi: ISIJ Int., 1997, vol. 37, pp. 458-67.CrossRef
17.
Zurück zum Zitat J. A. d. Castro, H. Nogami and J. Yagi: ISIJ Int., 2000, vol. 40, pp. 637–46. J. A. d. Castro, H. Nogami and J. Yagi: ISIJ Int., 2000, vol. 40, pp. 637–46.
18.
Zurück zum Zitat M. S. Chu, H. Nogami and J. Yagi: ISIJ Int., 2004, vol. 44, pp. 510-7.CrossRef M. S. Chu, H. Nogami and J. Yagi: ISIJ Int., 2004, vol. 44, pp. 510-7.CrossRef
19.
Zurück zum Zitat K. Yang, S. Choi, J. Chung and J. Yagi: ISIJ Int., 2010, vol. 50, pp. 972-80.CrossRef K. Yang, S. Choi, J. Chung and J. Yagi: ISIJ Int., 2010, vol. 50, pp. 972-80.CrossRef
20.
Zurück zum Zitat S. Natsui, T. Kikuchi and R. O. Suzuki: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2395-413.CrossRef S. Natsui, T. Kikuchi and R. O. Suzuki: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2395-413.CrossRef
21.
Zurück zum Zitat P. Zhou, H. L. Li, P. Y. Shi and C. Q. Zhou: Appl. Therm. Eng., 2016, vol. 95, pp. 296-302.CrossRef P. Zhou, H. L. Li, P. Y. Shi and C. Q. Zhou: Appl. Therm. Eng., 2016, vol. 95, pp. 296-302.CrossRef
22.
Zurück zum Zitat D. Fu, G. W. Tang, Y. F. Zhao, J. D’Alessio and C. Q. Zhou: Int. J. Heat Mass Transfer, 2016, vol. 103, pp. 77-86.CrossRef D. Fu, G. W. Tang, Y. F. Zhao, J. D’Alessio and C. Q. Zhou: Int. J. Heat Mass Transfer, 2016, vol. 103, pp. 77-86.CrossRef
23.
Zurück zum Zitat D. Fu, G. Tang, Y. Zhao, J. D’Alessio, and C.Q. Zhou: JOM, 2018, vol. 70, pp. 951–57.CrossRef D. Fu, G. Tang, Y. Zhao, J. D’Alessio, and C.Q. Zhou: JOM, 2018, vol. 70, pp. 951–57.CrossRef
24.
Zurück zum Zitat Z. Li, S. Kuang, A. Yu, J. Gao, Y. Qi, D. Yan, Y. Li, and X. Mao: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1995–2010.CrossRef Z. Li, S. Kuang, A. Yu, J. Gao, Y. Qi, D. Yan, Y. Li, and X. Mao: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1995–2010.CrossRef
25.
Zurück zum Zitat Y. S. Shen, B. Y. Guo, S. Chew, P. Austin and A. Yu: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1052-62.CrossRef Y. S. Shen, B. Y. Guo, S. Chew, P. Austin and A. Yu: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1052-62.CrossRef
26.
Zurück zum Zitat Z. Y. Li, S. B. Kuang, D. L. Yan, Y. H. Qi and A. B. Yu: Metall. Mater. Trans. B, 2016, vol. 48, pp. 602-18. Z. Y. Li, S. B. Kuang, D. L. Yan, Y. H. Qi and A. B. Yu: Metall. Mater. Trans. B, 2016, vol. 48, pp. 602-18.
27.
Zurück zum Zitat M. Geerdes, R. Chaigneau and I. Kurunov: Modern Blast Furnace Ironmaking: An Introduction, Ios Press, Netherlands, 2015, p. 18. M. Geerdes, R. Chaigneau and I. Kurunov: Modern Blast Furnace Ironmaking: An Introduction, Ios Press, Netherlands, 2015, p. 18.
28.
Zurück zum Zitat Y. S. Shen, A. B. Yu and P. Zulli: Steel Res. Int., 2011, vol. 82, pp. 532-42.CrossRef Y. S. Shen, A. B. Yu and P. Zulli: Steel Res. Int., 2011, vol. 82, pp. 532-42.CrossRef
29.
Zurück zum Zitat D. Rangarajan, T. Shiozawa, Y. S. Shen, J. S. Curtis and A. B. Yu: Ind. Eng. Chem. Res., 2013, vol. 53, pp. 4983-90.CrossRef D. Rangarajan, T. Shiozawa, Y. S. Shen, J. S. Curtis and A. B. Yu: Ind. Eng. Chem. Res., 2013, vol. 53, pp. 4983-90.CrossRef
30.
Zurück zum Zitat S. V. Pantakar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publication Corporation, Washington, 1980, p. 126. S. V. Pantakar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publication Corporation, Washington, 1980, p. 126.
31.
Zurück zum Zitat D. S. Gupta, J. D. Litster, V. R. Rudolph, E. T. White and A. Domanti: ISIJ Int., 1996, vol. 36, pp. 32-9.CrossRef D. S. Gupta, J. D. Litster, V. R. Rudolph, E. T. White and A. Domanti: ISIJ Int., 1996, vol. 36, pp. 32-9.CrossRef
32.
Zurück zum Zitat G. X. Wang, S. J. Chew, A. B. Yu and P. Zulli: Metall. Mater. Trans. B, 1997, vol. 28, pp. 333-43.CrossRef G. X. Wang, S. J. Chew, A. B. Yu and P. Zulli: Metall. Mater. Trans. B, 1997, vol. 28, pp. 333-43.CrossRef
33.
Zurück zum Zitat S. Ergun: Chem. Eng. Prog., 1952, vol. 48, pp. 89-94. S. Ergun: Chem. Eng. Prog., 1952, vol. 48, pp. 89-94.
34.
Zurück zum Zitat W. E. Ranz and W. R. Marshall: Chem. Eng. Prog., 1952, vol. 48, pp. 141-6. W. E. Ranz and W. R. Marshall: Chem. Eng. Prog., 1952, vol. 48, pp. 141-6.
35.
Zurück zum Zitat E. R. G. Eckert and R. M. Drake: Heat and mass transfer, 2nd ed, McGrawHill, New York, 1959, p. 173. E. R. G. Eckert and R. M. Drake: Heat and mass transfer, 2nd ed, McGrawHill, New York, 1959, p. 173.
36.
Zurück zum Zitat P. J. Mackey and N. A. Warner: Metal. Trans., 1972, vol. 3, pp. 1807-16.CrossRef P. J. Mackey and N. A. Warner: Metal. Trans., 1972, vol. 3, pp. 1807-16.CrossRef
37.
Zurück zum Zitat D. Maldonado, Ph.D. thesis, UNSW, 2003. D. Maldonado, Ph.D. thesis, UNSW, 2003.
38.
Zurück zum Zitat I. Muchi: TRANS ISIJ., 1967, vol. 7, pp. 223-37. I. Muchi: TRANS ISIJ., 1967, vol. 7, pp. 223-37.
39.
Zurück zum Zitat S. B. Kuang, Z. Y. Li, D. L. Yan, Y. H. Qi and A. B. Yu: Miner. Eng., 2014, vol. 63, pp. 45-56.CrossRef S. B. Kuang, Z. Y. Li, D. L. Yan, Y. H. Qi and A. B. Yu: Miner. Eng., 2014, vol. 63, pp. 45-56.CrossRef
40.
Zurück zum Zitat S. J. Zhang, A. B. Yu, P. Zulli, B. Wright and U. Tüzün: ISIJ Int., 1998, vol. 38, pp. 1311-9.CrossRef S. J. Zhang, A. B. Yu, P. Zulli, B. Wright and U. Tüzün: ISIJ Int., 1998, vol. 38, pp. 1311-9.CrossRef
41.
Zurück zum Zitat B. I. Kitaev, Y. G. Yaroshenko and V. D. Suchkov: Heat Exchange in Shaft Furnaces, Pergamon Press, London, 1967, p. 8. B. I. Kitaev, Y. G. Yaroshenko and V. D. Suchkov: Heat Exchange in Shaft Furnaces, Pergamon Press, London, 1967, p. 8.
42.
Zurück zum Zitat Z. L. Zhang, J. L. Meng, L. Guo and Z. C. Guo: Metall. Mater. Trans. B, 2016, vol. 47, pp. 467-84.CrossRef Z. L. Zhang, J. L. Meng, L. Guo and Z. C. Guo: Metall. Mater. Trans. B, 2016, vol. 47, pp. 467-84.CrossRef
Metadaten
Titel
Modelling of Blast Furnace with Respective Chemical Reactions in Coke and Ore Burden Layers
verfasst von
Xiaobing Yu
Yansong Shen
Publikationsdatum
16.07.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 5/2018
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-018-1332-6

Weitere Artikel der Ausgabe 5/2018

Metallurgical and Materials Transactions B 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.