Skip to main content
Erschienen in: Metallurgist 5-6/2020

01.10.2020

Modelling Selective Laser Melting of Metallic Powders

verfasst von: M. R. Ridolfi, P. Folgarait, A. Di Schino

Erschienen in: Metallurgist | Ausgabe 5-6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rapid growth of additive manufacturing techniques requires a parallel tailoring and further development of already existing models applied to industrial solidification processes. Friendly modelling tools can be a valid aid in setting optimal operating parameters ranges for extending those modelling technologies to already existing or innovative alloys. A modelling approach is described simulating the generation of single tracks scanned over the powder bed in a selective laser melting process, attaining track geometry as a function of alloy thermophysical properties, laser speed and power, and powder bed thickness. Post-processing the model results allows for the derivation of the porosity of the printed part, due to lack of fusion, on one hand, and to yield conditions for the formation of porosities due to keyhole formation, on the other hand. The approach followed is based on a simplified representation of the physical aspects. Main simplifying assumptions concern the laser energy input, modelling the formation of the pool cavity, and modelling the powder bed thermophysical properties. In the model, the effective laser absorptivity that increases with rising specific energy is accounted for at the onset of vaporization to show the real trend of pool volume increase, the subsequent pool cavity deepening, and the laser ray’s interceptions. Modelling the effective laser absorption variation has been validated using literature experimental data relating to laser welding tests performed on 316L disks. The model has been adjusted using literature data providing measures of track width and depth and relative density of printed parts relating to different alloys: Ti6Al4V, Inconel625, Al7050, 316L, and pure copper. Few adjusting parameters are employed, namely: liquid pool effective thermal conductivity, slope of the effective laser absorptivity curve vs specific energy, and slope of laser energy application depth vs specific energy. Other checks on different alloys are needed to refine the adjustment; the results show good potential concerning the future possibility of using the model for achieving operating windows for alloys other than the tested ones, avoiding the need to provide experimental data specific for each alloy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Marshall, Austenitic Stainless Steels: Microstructure and Mechanical Properties, Elsevier Applied Science Publisher (1984). P. Marshall, Austenitic Stainless Steels: Microstructure and Mechanical Properties, Elsevier Applied Science Publisher (1984).
2.
Zurück zum Zitat A. Di Schino, “Manufacturing and application of stainless steels,” Metals, 10, 327 (2020).CrossRef A. Di Schino, “Manufacturing and application of stainless steels,” Metals, 10, 327 (2020).CrossRef
3.
Zurück zum Zitat W. Liu, J. Lian, S. Munstermann, C. Zeng, and X. Fang, “Prediction of crack formation in the progressive folding of square tubes during dynamic axial crushing” Int. J. of Mech. Sci., 176, 105534 (2020).CrossRef W. Liu, J. Lian, S. Munstermann, C. Zeng, and X. Fang, “Prediction of crack formation in the progressive folding of square tubes during dynamic axial crushing” Int. J. of Mech. Sci., 176, 105534 (2020).CrossRef
4.
Zurück zum Zitat P. Mulidran, M. Siser, J. Slota, E. Spisak, and T. Sleziak, “Numerical prediction of forming car body parts with emphasis on springback,” Metals, 8, 60435 (2018). P. Mulidran, M. Siser, J. Slota, E. Spisak, and T. Sleziak, “Numerical prediction of forming car body parts with emphasis on springback,” Metals, 8, 60435 (2018).
5.
Zurück zum Zitat R. Rufini, O. Di Pietro, and A. Di Schino, “Predictive simulation of plastic processing of welded stainless steel pipes,” Metals, 8, 519 (2018).CrossRef R. Rufini, O. Di Pietro, and A. Di Schino, “Predictive simulation of plastic processing of welded stainless steel pipes,” Metals, 8, 519 (2018).CrossRef
6.
Zurück zum Zitat M. Corradi, A. I. Osofero, and A. Borri, “Repair and reinforcement of historic timber structures with stainless steel — a review,” Metals, 9, 106 (2019).CrossRef M. Corradi, A. I. Osofero, and A. Borri, “Repair and reinforcement of historic timber structures with stainless steel — a review,” Metals, 9, 106 (2019).CrossRef
7.
Zurück zum Zitat G. Gedge, “Structural uses of stainless steel — buildings and civil engineering,” J. Constr. Steel Res., 64, 1194–1198 (2008).CrossRef G. Gedge, “Structural uses of stainless steel — buildings and civil engineering,” J. Constr. Steel Res., 64, 1194–1198 (2008).CrossRef
8.
Zurück zum Zitat A. Di Schino, L. Alleva, and M. Guagnelli, “Microstructure evolution during quenching and tempering of martensite in a medium C steel,” Materials Science Forum, 715–716, 860–865 (2007). A. Di Schino, L. Alleva, and M. Guagnelli, “Microstructure evolution during quenching and tempering of martensite in a medium C steel,” Materials Science Forum, 715–716, 860–865 (2007).
9.
Zurück zum Zitat A. Di Schino, “Analysis of heat treatment effect on microstructural features evolution in a micro-alloyed martensitic steel,” Acta Metallurgica Slovaca, 22, 266–270 (2016).CrossRef A. Di Schino, “Analysis of heat treatment effect on microstructural features evolution in a micro-alloyed martensitic steel,” Acta Metallurgica Slovaca, 22, 266–270 (2016).CrossRef
10.
Zurück zum Zitat A. Di Schino and P. Di Nunzio, “Metallurgical aspects related to contact fatigue phenomena in steels for back up rolling,” Acta Metallurgica Slovaca, 23, 62–71 (2017).CrossRef A. Di Schino and P. Di Nunzio, “Metallurgical aspects related to contact fatigue phenomena in steels for back up rolling,” Acta Metallurgica Slovaca, 23, 62–71 (2017).CrossRef
11.
Zurück zum Zitat C. Gennari, M. Lago, B. Bogre, S. Meszaros, I. Calliari, and L. Pezzato, “Microstructural and corrosion properties of cold rolled laser welded UNS S32750 duplex stainless steel,” Metals, 8, 1074 (2018).CrossRef C. Gennari, M. Lago, B. Bogre, S. Meszaros, I. Calliari, and L. Pezzato, “Microstructural and corrosion properties of cold rolled laser welded UNS S32750 duplex stainless steel,” Metals, 8, 1074 (2018).CrossRef
12.
Zurück zum Zitat K. H. Lo, C. H. She, and J. K. L. Lai, “Recent developments in stainless steels,” Mat. Sci. Eng. R, 65, 39–104 (2009).CrossRef K. H. Lo, C. H. She, and J. K. L. Lai, “Recent developments in stainless steels,” Mat. Sci. Eng. R, 65, 39–104 (2009).CrossRef
13.
Zurück zum Zitat A. Di Schino, J. M. Kenny, and G. Abbruzzese, “Analysis of the recrystallization and grain growth processes in AISI 316 stainless steel,” J. Mat. Sci., 37, 5291–5298 (2002).CrossRef A. Di Schino, J. M. Kenny, and G. Abbruzzese, “Analysis of the recrystallization and grain growth processes in AISI 316 stainless steel,” J. Mat. Sci., 37, 5291–5298 (2002).CrossRef
14.
Zurück zum Zitat A. Di Schino, P. Di Nunzio, and G. Turconi, “Microstructure evolution during tempering of martensite in medium carbon steel,” Materials Science Forum, 558, 1435–1441 (2007). A. Di Schino, P. Di Nunzio, and G. Turconi, “Microstructure evolution during tempering of martensite in medium carbon steel,” Materials Science Forum, 558, 1435–1441 (2007).
15.
Zurück zum Zitat D. K. Sharma, M. Filipponi, A. Di Schino, F. Rossi, and J. Castaldi, “Corrosion behaviour of high temperature fuel cells: Issues for materials selection,” Metalurgija, 58, 347–351 (2019). D. K. Sharma, M. Filipponi, A. Di Schino, F. Rossi, and J. Castaldi, “Corrosion behaviour of high temperature fuel cells: Issues for materials selection,” Metalurgija, 58, 347–351 (2019).
16.
Zurück zum Zitat A. Di Schino, L. Valentini, J. M. Kenny, Y. Gerbig, I. Ahmed, and H. Hefke, “Wear resistance of high-nitrogen austenitic stainless steel coated with nitrogenated amorphous carbon films,” Surf. Coat. Technol., 161, 224–231 (2002).CrossRef A. Di Schino, L. Valentini, J. M. Kenny, Y. Gerbig, I. Ahmed, and H. Hefke, “Wear resistance of high-nitrogen austenitic stainless steel coated with nitrogenated amorphous carbon films,” Surf. Coat. Technol., 161, 224–231 (2002).CrossRef
17.
Zurück zum Zitat C. Zitelli, P. Folgarait, and A. Di Schino, “Laser powder bed fusion of stainless-steel grades: A review,” Metals, 9, 731 (2019).CrossRef C. Zitelli, P. Folgarait, and A. Di Schino, “Laser powder bed fusion of stainless-steel grades: A review,” Metals, 9, 731 (2019).CrossRef
18.
Zurück zum Zitat G. Napoli, A. Di Schino, M. Paura, and T. Vela, “Colouring titanium alloys by anodic oxidation,” Metalurgija, 57, 111–113 (2018). G. Napoli, A. Di Schino, M. Paura, and T. Vela, “Colouring titanium alloys by anodic oxidation,” Metalurgija, 57, 111–113 (2018).
19.
Zurück zum Zitat H. Mindt, O. Desmaison, N. Megahed, A. Peralta, and J. Neumann, “Modeling of powder bed manufacturing defects,” J. Mater. Eng. Perform., 27, 32–43 (2017).CrossRef H. Mindt, O. Desmaison, N. Megahed, A. Peralta, and J. Neumann, “Modeling of powder bed manufacturing defects,” J. Mater. Eng. Perform., 27, 32–43 (2017).CrossRef
20.
Zurück zum Zitat T. M. Mower and M. J. Long, “Mechanical behavior of additive manufactured, powder-bed laser-fused materials,” Mater. Sci. Eng. A, 651, 198–213 (2016).CrossRef T. M. Mower and M. J. Long, “Mechanical behavior of additive manufactured, powder-bed laser-fused materials,” Mater. Sci. Eng. A, 651, 198–213 (2016).CrossRef
21.
Zurück zum Zitat H. Gong, K. Rafi, H. Gu, T. Starr, and B. Stucker, “Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes,” Addit. Manuf., 87–98 (2014). H. Gong, K. Rafi, H. Gu, T. Starr, and B. Stucker, “Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes,” Addit. Manuf., 87–98 (2014).
22.
Zurück zum Zitat S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Mater., 108, 36–45 (2016). S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Mater., 108, 36–45 (2016).
23.
Zurück zum Zitat J. L. Beuth and N. Klingbeil, “The role of process variables in laser-based direct metal solid freeform fabrication,” JOM, 53, 36–39 (2020).CrossRef J. L. Beuth and N. Klingbeil, “The role of process variables in laser-based direct metal solid freeform fabrication,” JOM, 53, 36–39 (2020).CrossRef
24.
Zurück zum Zitat J. Beuth, J. Fox, J. Gockel, C. Montgomery, R. Yang, H. Qiao, E. Soylemez, P. Reeseewatt, A. Anvari, and S. Narra, “Process mapping for qualification across multiple direct metal additive manufacturing processes,” in: Proceedings of the Solid Freeform Fabrication Symposium 2013 Proceedings, Austin, TX, USA, 655–665 (2013). J. Beuth, J. Fox, J. Gockel, C. Montgomery, R. Yang, H. Qiao, E. Soylemez, P. Reeseewatt, A. Anvari, and S. Narra, “Process mapping for qualification across multiple direct metal additive manufacturing processes,” in: Proceedings of the Solid Freeform Fabrication Symposium 2013 Proceedings, Austin, TX, USA, 655–665 (2013).
25.
Zurück zum Zitat M. Markl and C. Körner, “Multiscale modeling of powder bed-based additive manufacturing,” Annu. Rev. Mater. Res., 46, 93–123 (2016).CrossRef M. Markl and C. Körner, “Multiscale modeling of powder bed-based additive manufacturing,” Annu. Rev. Mater. Res., 46, 93–123 (2016).CrossRef
26.
Zurück zum Zitat Y. Mayi, M. Dal, P. Peyre, M. Bellet, M. Metton, C. Moriconi, and R. Fabbro, “A mesoscopic approach for modelling laser beam melting (LBM),” in: Proceedings of the II International Conference on Simulation for Additive Manufacturing-Sim-AM 2019, Pavia, Italy, 11–13 September, 2019 (2019). Y. Mayi, M. Dal, P. Peyre, M. Bellet, M. Metton, C. Moriconi, and R. Fabbro, “A mesoscopic approach for modelling laser beam melting (LBM),” in: Proceedings of the II International Conference on Simulation for Additive Manufacturing-Sim-AM 2019, Pavia, Italy, 11–13 September, 2019 (2019).
27.
Zurück zum Zitat W. King, H. D. Barth, V. M. Castillo, G. F. Gallegos, J. Gibbs, D. E. Hahn, C. Kamath, and A. Rubenchik, “Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing,” J. Mater. Process. Technol., 214, 2915–2925 (2014).CrossRef W. King, H. D. Barth, V. M. Castillo, G. F. Gallegos, J. Gibbs, D. E. Hahn, C. Kamath, and A. Rubenchik, “Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing,” J. Mater. Process. Technol., 214, 2915–2925 (2014).CrossRef
28.
Zurück zum Zitat J. Trapp, A. M. Rubenchik, G. Guss, and M. Matthews, “In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing,” Appl. Mater. Today, 9, 341–349 (2017).CrossRef J. Trapp, A. M. Rubenchik, G. Guss, and M. Matthews, “In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing,” Appl. Mater. Today, 9, 341–349 (2017).CrossRef
29.
Zurück zum Zitat M. R. Maina, Y. Okamoto, R. Inoue, S. I. Nakashiba, A. Okada, and T. Sakagawa, “Influence of surface state in micro-welding of copper by Nd:YAG laser,” Appl. Sci., 8, 2364–2366 (2018).CrossRef M. R. Maina, Y. Okamoto, R. Inoue, S. I. Nakashiba, A. Okada, and T. Sakagawa, “Influence of surface state in micro-welding of copper by Nd:YAG laser,” Appl. Sci., 8, 2364–2366 (2018).CrossRef
30.
Zurück zum Zitat T. Mukherjee, J. S. Zuback, A. De, and T. Debroy, “Heat and fluid flow modeling to examine 3D-printability of alloys,” in: Proceedings of the 7th International Symposium on High-Temperature Metallurgical Processing; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 471–478 (2016). T. Mukherjee, J. S. Zuback, A. De, and T. Debroy, “Heat and fluid flow modeling to examine 3D-printability of alloys,” in: Proceedings of the 7th International Symposium on High-Temperature Metallurgical Processing; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 471–478 (2016).
31.
Zurück zum Zitat H. Ki, J. Mazumder, and P. S. Mohanty, “Modeling of laser keyhole welding: Part I. Mathematical modeling numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution,” Met. Mater. Trans. A, 33, 1817–1830 (2002).CrossRef H. Ki, J. Mazumder, and P. S. Mohanty, “Modeling of laser keyhole welding: Part I. Mathematical modeling numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution,” Met. Mater. Trans. A, 33, 1817–1830 (2002).CrossRef
32.
Zurück zum Zitat V. Semak and A. Matsunawa, “The role of recoil pressure in energy balance during laser materials processing,” J. Phys. D Appl. Phys., 30, 2541–2552 (1997).CrossRef V. Semak and A. Matsunawa, “The role of recoil pressure in energy balance during laser materials processing,” J. Phys. D Appl. Phys., 30, 2541–2552 (1997).CrossRef
33.
Zurück zum Zitat J. J. S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, and B. Stucker, “Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting,” Prog. Addit. Manuf., 2, 157–167 (2017).CrossRef J. J. S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, and B. Stucker, “Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting,” Prog. Addit. Manuf., 2, 157–167 (2017).CrossRef
34.
Zurück zum Zitat T. Qi, H. Zhu, H. Zhang, J. Yin, L. Ke, and X. Zeng, “Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode,” Mater. Des., 135, 257–266 (2017).CrossRef T. Qi, H. Zhu, H. Zhang, J. Yin, L. Ke, and X. Zeng, “Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode,” Mater. Des., 135, 257–266 (2017).CrossRef
35.
Zurück zum Zitat M. Colopi, L. Caprio, A. G. Demir, and B. Previtali, “Selective laser melting of pure Cu with a 1 kW single mode fiber laser,” Procedia CIRP, 74, 59–63 (2018).CrossRef M. Colopi, L. Caprio, A. G. Demir, and B. Previtali, “Selective laser melting of pure Cu with a 1 kW single mode fiber laser,” Procedia CIRP, 74, 59–63 (2018).CrossRef
37.
Zurück zum Zitat W. T. Walter, “Change in reflectivity of metals under intense laser radiation, revision,” in: Defense Technical Information Center (DTIC), Fairfax County, VA, USA (1981). W. T. Walter, “Change in reflectivity of metals under intense laser radiation, revision,” in: Defense Technical Information Center (DTIC), Fairfax County, VA, USA (1981).
38.
Zurück zum Zitat C. Cagran, Thermal Conductivity and Thermal Diffusivity of Liquid Copper, Bachelor Thesis, TUGRAZ, Graz, Austria (2000). C. Cagran, Thermal Conductivity and Thermal Diffusivity of Liquid Copper, Bachelor Thesis, TUGRAZ, Graz, Austria (2000).
39.
Zurück zum Zitat G. L. Spierings, “Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades,” in: Proceedings of the Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 342–353 (2009). G. L. Spierings, “Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades,” in: Proceedings of the Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 342–353 (2009).
Metadaten
Titel
Modelling Selective Laser Melting of Metallic Powders
verfasst von
M. R. Ridolfi
P. Folgarait
A. Di Schino
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 5-6/2020
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-020-01031-7

Weitere Artikel der Ausgabe 5-6/2020

Metallurgist 5-6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.