Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Production Engineering 5-6/2020

17.11.2020 | Production Process

Modelling surface quality of abrasive water jet processing at multi-objective optimization criteria

verfasst von: Ahmed S. Elmesalamy

Erschienen in: Production Engineering | Ausgabe 5-6/2020

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Al–Mg alloys belong to high mechanical properties aluminum alloys. They are used for different industries such as: automotive, and ship building, etc. Most of these industries depend on large sheet processing. Productivity of the used conventional processing techniques is considered a drawback specially for large plates cutting. High processing temperature can deteriorate the cut material properties. Abrasive water jet process (AWJ) is one of the modern nontraditional machining processes. It can be used for cutting most of materials with approximately zero thermal effect and relatively high cutting speed. Despite the high productivity of this technique, however quality of the cut surface is considered a challenge. During this study AWJ technique will be investigated for understanding the cutting quality behavior at high cutting speed without forfeiting the cutting quality. A control model is developed to understand the interactive relation between the control factors and output responses of the cutting process. It can be used for: prediction the surface behavior at different control parameters combinations, and recommend the control parameters which satisfy a certain surface quality. Cutting speed, main stream pressure, and (stand-off distance) were employed as control factors. Quality of cutting process will be assessed in terms of surface roughness, striation forming, kerf width, and cut taper angel. Model is optimized and verified experimentally at different conditions to evaluate the accuracy of the model prediction. The model validation shows a very good correlation between the experimental and optimization results.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literatur
1.
Zurück zum Zitat Romhanji E, Popović M (2006) Problems and prospect of Al-Mg alloys application in marine constructions. J Metall 12:4 Romhanji E, Popović M (2006) Problems and prospect of Al-Mg alloys application in marine constructions. J Metall 12:4
2.
Zurück zum Zitat Romhanji E, Popovic M, Glisic D, Milenkovic V (1998) Formability of a high-strength Al–Mg6.8 type alloy sheet. J Mater Sci 33:6 CrossRef Romhanji E, Popovic M, Glisic D, Milenkovic V (1998) Formability of a high-strength Al–Mg6.8 type alloy sheet. J Mater Sci 33:6 CrossRef
3.
Zurück zum Zitat Toros S, Ozturk F (2010) Modeling uniaxial, temperature and strain rate dependent behavior of Al–Mg alloys. Comput Mater Sci 49:333–339 CrossRef Toros S, Ozturk F (2010) Modeling uniaxial, temperature and strain rate dependent behavior of Al–Mg alloys. Comput Mater Sci 49:333–339 CrossRef
4.
Zurück zum Zitat Kaushik (2015) A review on use of aluminium alloys in aircraft components. i-Manag J Mater Sci 3:33–38 Kaushik (2015) A review on use of aluminium alloys in aircraft components. i-Manag J Mater Sci 3:33–38
5.
Zurück zum Zitat Lin Y-K et al (2017) The effect of heat treatment on the sensitized corrosion of the 5383-H116 Al-Mg alloy. Materials (Basel, Switz) 10(3):275 CrossRef Lin Y-K et al (2017) The effect of heat treatment on the sensitized corrosion of the 5383-H116 Al-Mg alloy. Materials (Basel, Switz) 10(3):275 CrossRef
6.
Zurück zum Zitat Krzysztof Dudzik AC (2013) Mechanical properties of 5083, 5059 and 7020 aluminium alloys and their joints welded by FSW. J KONES Powertrain Transp 20(2):69–74 Krzysztof Dudzik AC (2013) Mechanical properties of 5083, 5059 and 7020 aluminium alloys and their joints welded by FSW. J KONES Powertrain Transp 20(2):69–74
7.
Zurück zum Zitat El Midany T et al (2019) Experimental study and modelling of abrasive water jet cutting of aluminum alloy 2024. J Eng Sci Mil Technol 3(1):14–22 CrossRef El Midany T et al (2019) Experimental study and modelling of abrasive water jet cutting of aluminum alloy 2024. J Eng Sci Mil Technol 3(1):14–22 CrossRef
8.
Zurück zum Zitat Gylienė V, Jūrėnas V, Krasauskas P (2014) Investigation of abrasive water jet cutting parameters influence on 6082 aluminium alloy surface roughness. J Mech 20(6):602–606 Gylienė V, Jūrėnas V, Krasauskas P (2014) Investigation of abrasive water jet cutting parameters influence on 6082 aluminium alloy surface roughness. J Mech 20(6):602–606
9.
Zurück zum Zitat Wang J, Guo DM (2003) The cutting performance in multipass abrasive waterjet machining of industrial ceramics. J Mater Process Technol 133:371–377 CrossRef Wang J, Guo DM (2003) The cutting performance in multipass abrasive waterjet machining of industrial ceramics. J Mater Process Technol 133:371–377 CrossRef
10.
Zurück zum Zitat Ahmed TM et al (2018) Improving surface roughness of abrasive waterjet cutting process by using statistical modeling. CIRP J Manuf Sci Technol 22:30–36 CrossRef Ahmed TM et al (2018) Improving surface roughness of abrasive waterjet cutting process by using statistical modeling. CIRP J Manuf Sci Technol 22:30–36 CrossRef
11.
Zurück zum Zitat Vundavilli PR et al (2012) Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process. Knowl Based Syst 27:456–464 CrossRef Vundavilli PR et al (2012) Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process. Knowl Based Syst 27:456–464 CrossRef
12.
Zurück zum Zitat Paul S, Hoogstrate AM, van Luttervelt CA, Kals HJJ (1998) Analytical and experimental modelling of the abrasive water jet cutting of ductile materials. J Mater Process Technol 73:189–199 CrossRef Paul S, Hoogstrate AM, van Luttervelt CA, Kals HJJ (1998) Analytical and experimental modelling of the abrasive water jet cutting of ductile materials. J Mater Process Technol 73:189–199 CrossRef
13.
Zurück zum Zitat Zeng J, Kim TJ (1996) An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear 193(2):207–217 CrossRef Zeng J, Kim TJ (1996) An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear 193(2):207–217 CrossRef
14.
Zurück zum Zitat Holmqvist G, Honsberg U (2008) Sensitivity analysis of abrasive waterjet cutting economy. In: Proceeding of 19th International Conference on Water Jetting. Nottingham University, UK, pp 273–287 Holmqvist G, Honsberg U (2008) Sensitivity analysis of abrasive waterjet cutting economy. In: Proceeding of 19th International Conference on Water Jetting. Nottingham University, UK, pp 273–287
15.
Zurück zum Zitat Kechagias J, Petropoulos G, Vaxevanidis N (2012) Application of Taguchi design for quality characterization of abrasive water jet machining of TRIP sheet steels. Int J Adv Manuf Technol 62(5):635–643 CrossRef Kechagias J, Petropoulos G, Vaxevanidis N (2012) Application of Taguchi design for quality characterization of abrasive water jet machining of TRIP sheet steels. Int J Adv Manuf Technol 62(5):635–643 CrossRef
16.
Zurück zum Zitat Alsoufi MS, Suker DK, Alhazmi MW, Azam S (2017) Influence of abrasive waterjet machining parameters on the surface texture quality of Carrara marble. J Surf Eng Mater Adv Technol 7:25–37 Alsoufi MS, Suker DK, Alhazmi MW, Azam S (2017) Influence of abrasive waterjet machining parameters on the surface texture quality of Carrara marble. J Surf Eng Mater Adv Technol 7:25–37
17.
Zurück zum Zitat Lebar A, Junkar M (2004) Simulation of abrasive water jet cutting process: part 1. Unit event approach. Model Simul Mater Sci Eng 12(6):1159–1170 CrossRef Lebar A, Junkar M (2004) Simulation of abrasive water jet cutting process: part 1. Unit event approach. Model Simul Mater Sci Eng 12(6):1159–1170 CrossRef
18.
Zurück zum Zitat Azmir MA, Ahsan AK (2009) A study of abrasive water jet machining process on glass/epoxy composite laminate. J Mater Process Technol 209(20):6168–6173 CrossRef Azmir MA, Ahsan AK (2009) A study of abrasive water jet machining process on glass/epoxy composite laminate. J Mater Process Technol 209(20):6168–6173 CrossRef
19.
Zurück zum Zitat Montgomery (2017) Design and analysis of experiments. Wiley, New York Montgomery (2017) Design and analysis of experiments. Wiley, New York
20.
Zurück zum Zitat Trivedi P, Dhanawade A, Kumar S (2015) An experimental investigation on cutting performance of abrasive water jet machining of austenite steel (AISI 316L). Adv Mater Process Technol 1(3–4):263–274 Trivedi P, Dhanawade A, Kumar S (2015) An experimental investigation on cutting performance of abrasive water jet machining of austenite steel (AISI 316L). Adv Mater Process Technol 1(3–4):263–274
21.
Zurück zum Zitat Anawa EM, Olabi AG (2008) Using Taguchi method to optimize welding pool of dissimilar laser-welded components. Opt Laser Technol 40(2):379–388 CrossRef Anawa EM, Olabi AG (2008) Using Taguchi method to optimize welding pool of dissimilar laser-welded components. Opt Laser Technol 40(2):379–388 CrossRef
22.
Zurück zum Zitat Elmesalamy AS, Li L, Francis JA, Sezer HK (2013) Understanding the process parameter interactions in multiple-pass ultra-narrow-gap laser welding of thick-section stainless steels. Int J Adv Manuf Technol 68:1–4 CrossRef Elmesalamy AS, Li L, Francis JA, Sezer HK (2013) Understanding the process parameter interactions in multiple-pass ultra-narrow-gap laser welding of thick-section stainless steels. Int J Adv Manuf Technol 68:1–4 CrossRef
23.
Zurück zum Zitat Duspara M, Starčević V, Samardžić I (2018) Analysis of zones created with waterjet cutting of AISI 316 L corrosion resistant steel. Tehnicki Vjesnik 25:616–621 Duspara M, Starčević V, Samardžić I (2018) Analysis of zones created with waterjet cutting of AISI 316 L corrosion resistant steel. Tehnicki Vjesnik 25:616–621
24.
Zurück zum Zitat Reisgen U et al (2012) Statistical modeling of laser welding of DP/TRIP steel sheets. Opt Laser Technol 44(1):92–101 CrossRef Reisgen U et al (2012) Statistical modeling of laser welding of DP/TRIP steel sheets. Opt Laser Technol 44(1):92–101 CrossRef
25.
Zurück zum Zitat Ćojbašić Ž et al (2016) Surface roughness prediction by extreme learning machine constructed with abrasive water jet. Precis Eng 43:86–92 CrossRef Ćojbašić Ž et al (2016) Surface roughness prediction by extreme learning machine constructed with abrasive water jet. Precis Eng 43:86–92 CrossRef
Metadaten
Titel
Modelling surface quality of abrasive water jet processing at multi-objective optimization criteria
verfasst von
Ahmed S. Elmesalamy
Publikationsdatum
17.11.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Production Engineering / Ausgabe 5-6/2020
Print ISSN: 0944-6524
Elektronische ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-020-00997-2

Weitere Artikel der Ausgabe 5-6/2020

Production Engineering 5-6/2020 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.