Skip to main content

2010 | OriginalPaper | Buchkapitel

39. Models for Stress and Dislocation Generation in Melt Based Compound Crystal Growth

verfasst von : Vishwanath (Vish) Prasad, Srinivas Pendurti

Erschienen in: Springer Handbook of Crystal Growth

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A major issue in the growth of semiconductor crystals is the presence of line defects or dislocations. Dislocations are a major impediment to the usage of III–V and other compound semiconductor crystals in electronic, optical, and other applications. This chapter reviews the origins of dislocations in melt-based growth processes and models for stress-driven dislocation multiplication. These models are presented from the point of view of dislocations as the agents of plastic deformation required to relieve the thermal stresses generated in the crystal during melt-based growth processes. Consequently they take the form of viscoplastic constitutive equations for the deformation of the crystal taking into account the microdynamical details of dislocations such as dislocation velocities and interactions. The various aspects of these models are dealt in detail, and finally some representative numerical results are presented for the liquid encapsulated Czochralski (LEC) growth of InP crystals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
39.1.
Zurück zum Zitat J. Czochralski: Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle, Z. Phys. Chem. 92, 219–221 (1917), in German J. Czochralski: Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle, Z. Phys. Chem. 92, 219–221 (1917), in German
39.2.
Zurück zum Zitat G.K. Teal, J.B. Little: Growth of germanium single crystals, Phys. Rev. 78, 647 (1950) G.K. Teal, J.B. Little: Growth of germanium single crystals, Phys. Rev. 78, 647 (1950)
39.3.
Zurück zum Zitat W.C. Dash: Dislocation free silicon crystals. In: Growth and Perfection of Crystals, ed. by R.M. Doremus, B.W. Roberts, D. Turnbull (Wiley, New York 1958) W.C. Dash: Dislocation free silicon crystals. In: Growth and Perfection of Crystals, ed. by R.M. Doremus, B.W. Roberts, D. Turnbull (Wiley, New York 1958)
39.4.
Zurück zum Zitat V. Swaminathan, A.S. Jordan: Dislocations in III/V compounds, Semicond. Semimet. 38, 293–341 (1993)CrossRef V. Swaminathan, A.S. Jordan: Dislocations in III/V compounds, Semicond. Semimet. 38, 293–341 (1993)CrossRef
39.5.
Zurück zum Zitat R.J. Roedel, A.R. Von Neida, R. Caruso, L.R. Dawson: The effect of dislocations in Ga_1-xAl_xAs:Si light-emitting diodes, J. Electrochem. Soc. 126, 637–641 (1979)CrossRef R.J. Roedel, A.R. Von Neida, R. Caruso, L.R. Dawson: The effect of dislocations in Ga_1-xAl_xAs:Si light-emitting diodes, J. Electrochem. Soc. 126, 637–641 (1979)CrossRef
39.6.
Zurück zum Zitat J.P. Hirth, J. Lothe: Theory of Dislocations (Krieger, Malabar 1992) J.P. Hirth, J. Lothe: Theory of Dislocations (Krieger, Malabar 1992)
39.7.
Zurück zum Zitat H. Alexander: On dislocation generation in semiconductor crystals, Radiat. Eff. Defects Solids 112(1/2), 1–12 (1989)CrossRef H. Alexander: On dislocation generation in semiconductor crystals, Radiat. Eff. Defects Solids 112(1/2), 1–12 (1989)CrossRef
39.8.
Zurück zum Zitat B.T. Lee, R. Gronsky, E.D. Bourret: Dislocation loops and precipitates associated with excess arsenic in GaAs, J. Appl. Phys. 64(1), 114–118 (1988)ADSCrossRef B.T. Lee, R. Gronsky, E.D. Bourret: Dislocation loops and precipitates associated with excess arsenic in GaAs, J. Appl. Phys. 64(1), 114–118 (1988)ADSCrossRef
39.9.
Zurück zum Zitat J. Lagowski, H.C. Gatos, T. Aoyama, D.G. Lin: Fermi energy control of vacancy coalescence and dislocation density in melt-grown GaAs, Appl. Phys. Lett. 45(6), 680–682 (1984)ADSCrossRef J. Lagowski, H.C. Gatos, T. Aoyama, D.G. Lin: Fermi energy control of vacancy coalescence and dislocation density in melt-grown GaAs, Appl. Phys. Lett. 45(6), 680–682 (1984)ADSCrossRef
39.10.
Zurück zum Zitat W. Zulehner: Czochralski growth of silicon, J. Cryst. Growth 65(1–3), 189–213 (1983)ADSCrossRef W. Zulehner: Czochralski growth of silicon, J. Cryst. Growth 65(1–3), 189–213 (1983)ADSCrossRef
39.11.
Zurück zum Zitat M.F. Ashby, L. Johnson: On the generation of dislocations at misfitting particles in a ductile matrix, Philos. Mag. 20, 1009–1022 (1969)ADSCrossRef M.F. Ashby, L. Johnson: On the generation of dislocations at misfitting particles in a ductile matrix, Philos. Mag. 20, 1009–1022 (1969)ADSCrossRef
39.12.
Zurück zum Zitat A.S. Jordan, R. Caruso, A.R. Von Neida: A thermoelastic analysis of dislocation generation in pulled GaAs crystals, Bell Syst. Technol. J. 59(4), 593–637 (1980)CrossRef A.S. Jordan, R. Caruso, A.R. Von Neida: A thermoelastic analysis of dislocation generation in pulled GaAs crystals, Bell Syst. Technol. J. 59(4), 593–637 (1980)CrossRef
39.13.
Zurück zum Zitat N. Kobayashi, T. Iwaki: A thermoelastic analysis of the thermal stress produced in a semi-infinite cylindrical single crystal during the Czochralski growth, J. Cryst. Growth 73, 96–110 (1985)ADSCrossRef N. Kobayashi, T. Iwaki: A thermoelastic analysis of the thermal stress produced in a semi-infinite cylindrical single crystal during the Czochralski growth, J. Cryst. Growth 73, 96–110 (1985)ADSCrossRef
39.14.
Zurück zum Zitat M. Duseaux: Temperature profile and thermal-stress calculations in GaAs crystals growing from the melt, J. Cryst. Growth 61(3), 576–590 (1983)ADSCrossRef M. Duseaux: Temperature profile and thermal-stress calculations in GaAs crystals growing from the melt, J. Cryst. Growth 61(3), 576–590 (1983)ADSCrossRef
39.15.
Zurück zum Zitat J.C. Lambropoulos: Stresses near the solid-liquid interface during the growth of a Czochralski crystal, J. Cryst. Growth 80, 245–256 (1987)ADSCrossRef J.C. Lambropoulos: Stresses near the solid-liquid interface during the growth of a Czochralski crystal, J. Cryst. Growth 80, 245–256 (1987)ADSCrossRef
39.16.
Zurück zum Zitat C.E. Schvezov, I.V. Samarasekera, F. Weinberg: Calculation of the shear stress distribution in LEC gallium arsenide for different growth conditions, J. Cryst. Growth 92, 479–488 (1988)ADSCrossRef C.E. Schvezov, I.V. Samarasekera, F. Weinberg: Calculation of the shear stress distribution in LEC gallium arsenide for different growth conditions, J. Cryst. Growth 92, 479–488 (1988)ADSCrossRef
39.17.
Zurück zum Zitat G.O. Meduoye, K.E. Evans, D.J. Bacon: Modelling of the growth of the LEC technique II. Thermal stress distribution and influence of interface shape, J. Cryst. Growth 97, 709–719 (1989)ADSCrossRef G.O. Meduoye, K.E. Evans, D.J. Bacon: Modelling of the growth of the LEC technique II. Thermal stress distribution and influence of interface shape, J. Cryst. Growth 97, 709–719 (1989)ADSCrossRef
39.18.
Zurück zum Zitat G.O. Meduoye, D.J. Bacon, K.E. Evans: Computer modelling of temperature and stress distributions in LEC-grown GaAs crystals, J. Cryst. Growth 108, 627–636 (1991)ADSCrossRef G.O. Meduoye, D.J. Bacon, K.E. Evans: Computer modelling of temperature and stress distributions in LEC-grown GaAs crystals, J. Cryst. Growth 108, 627–636 (1991)ADSCrossRef
39.19.
Zurück zum Zitat S. Motakef, K.W. Kelly, K. Koai: Comparison of calculated and measured dislocation density in LEC-grown GaAs crystals, J. Cryst. Growth 113, 279–288 (1991)ADSCrossRef S. Motakef, K.W. Kelly, K. Koai: Comparison of calculated and measured dislocation density in LEC-grown GaAs crystals, J. Cryst. Growth 113, 279–288 (1991)ADSCrossRef
39.20.
Zurück zum Zitat F. Dupret, P. Necodeme, Y. Ryckmans: Numerical method for reducing stress level in GaAs crystals, J. Cryst. Growth 97, 162–172 (1989)ADSCrossRef F. Dupret, P. Necodeme, Y. Ryckmans: Numerical method for reducing stress level in GaAs crystals, J. Cryst. Growth 97, 162–172 (1989)ADSCrossRef
39.21.
Zurück zum Zitat D.E. Bornside, T.A. Kinney, R.A. Brown: Minimization of thermoelastic stresses in Czochralski grown silicon: Application of the integrated system model, J. Cryst. Growth 108, 779–805 (1991)ADSCrossRef D.E. Bornside, T.A. Kinney, R.A. Brown: Minimization of thermoelastic stresses in Czochralski grown silicon: Application of the integrated system model, J. Cryst. Growth 108, 779–805 (1991)ADSCrossRef
39.22.
Zurück zum Zitat Y.F. Zou, H. Zhang, V. Prasad: Dynamics of melt-crystal interface and coupled convection-stress predictions for Czochralski crystal growth processes, J. Cryst. Growth 166, 476–482 (1996)ADSCrossRef Y.F. Zou, H. Zhang, V. Prasad: Dynamics of melt-crystal interface and coupled convection-stress predictions for Czochralski crystal growth processes, J. Cryst. Growth 166, 476–482 (1996)ADSCrossRef
39.23.
Zurück zum Zitat I. Yonenaga, K. Sumino: Impurity effects on the generation, velocity, and immobilization of dislocations in GaAs, J. Appl. Phys. 65, 85–92 (1989)ADSCrossRef I. Yonenaga, K. Sumino: Impurity effects on the generation, velocity, and immobilization of dislocations in GaAs, J. Appl. Phys. 65, 85–92 (1989)ADSCrossRef
39.24.
Zurück zum Zitat J. Lubliner: Plasticity Theory (Macmillan, New York 1990)MATH J. Lubliner: Plasticity Theory (Macmillan, New York 1990)MATH
39.25.
Zurück zum Zitat K. Sumino: Mechanical behavior of semiconductors. In: Handbook on Semiconductors, Vol. 3a, ed. by S. Mahajan, T.S. Moss (Elsevier, Amsterdam 1994) pp. 73–181 K. Sumino: Mechanical behavior of semiconductors. In: Handbook on Semiconductors, Vol. 3a, ed. by S. Mahajan, T.S. Moss (Elsevier, Amsterdam 1994) pp. 73–181
39.26.
Zurück zum Zitat J. Hornstra: Dislocations in the diamond lattice, J. Phys. Chem. Solids 5, 129–141 (1958)ADSCrossRef J. Hornstra: Dislocations in the diamond lattice, J. Phys. Chem. Solids 5, 129–141 (1958)ADSCrossRef
39.27.
Zurück zum Zitat H. Alexander: Dislocations in covalent crystals. In: Dislocations in Solids, Vol. 7, ed. by F.R.N. Nabarro (North-Holland, Amsterdam 1986) pp. 113–234 H. Alexander: Dislocations in covalent crystals. In: Dislocations in Solids, Vol. 7, ed. by F.R.N. Nabarro (North-Holland, Amsterdam 1986) pp. 113–234
39.28.
Zurück zum Zitat D.J.H. Cockayne, A. Hons: Dislocations in semiconductors as studied by weak-beam electron-microscopy, J. Phys. 40(6), 11–18 (1979) D.J.H. Cockayne, A. Hons: Dislocations in semiconductors as studied by weak-beam electron-microscopy, J. Phys. 40(6), 11–18 (1979)
39.29.
Zurück zum Zitat H. Gottschalk, G. Patzer, H. Alexander: Stacking-fault energy and ionicity of cubic III–V compounds, Phys. Status Solidi (a) 45(1), 207–217 (1978)ADSCrossRef H. Gottschalk, G. Patzer, H. Alexander: Stacking-fault energy and ionicity of cubic III–V compounds, Phys. Status Solidi (a) 45(1), 207–217 (1978)ADSCrossRef
39.30.
Zurück zum Zitat R. Meingast, H. Alexander: Dissociated dislocations in germanium, Phys. Status Solidi (a) 17(1), 229–236 (1973)ADSCrossRef R. Meingast, H. Alexander: Dissociated dislocations in germanium, Phys. Status Solidi (a) 17(1), 229–236 (1973)ADSCrossRef
39.31.
Zurück zum Zitat A. George, J. Rabier: Dislocations and plasticity in semiconductors. I – Dislocation structures and dynamics, Rev. Phys. Appl. 22, 941–966 (1987)CrossRef A. George, J. Rabier: Dislocations and plasticity in semiconductors. I – Dislocation structures and dynamics, Rev. Phys. Appl. 22, 941–966 (1987)CrossRef
39.32.
Zurück zum Zitat W.G. Johnston, J.J. Gilman: Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals, J. Appl. Phys. 30, 129–144 (1959)ADSCrossRef W.G. Johnston, J.J. Gilman: Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals, J. Appl. Phys. 30, 129–144 (1959)ADSCrossRef
39.33.
Zurück zum Zitat H. Alexander, P. Haasen: Dislocations and plastic flow in the diamond structure. In: Solid State Physics, Vol. 22, ed. by F. Seitz, D. Turnbull, H. Ehrenreich (Academic, New York 1968) pp. 28–158 H. Alexander, P. Haasen: Dislocations and plastic flow in the diamond structure. In: Solid State Physics, Vol. 22, ed. by F. Seitz, D. Turnbull, H. Ehrenreich (Academic, New York 1968) pp. 28–158
39.34.
Zurück zum Zitat A.R. Chaudhuri, J.R. Patel, L.G. Rubin: Velocities and densities of dislocations in germanium and other semiconductor crystals, J. Appl. Phys. 33, 2736–2746 (1962)ADSCrossRef A.R. Chaudhuri, J.R. Patel, L.G. Rubin: Velocities and densities of dislocations in germanium and other semiconductor crystals, J. Appl. Phys. 33, 2736–2746 (1962)ADSCrossRef
39.35.
Zurück zum Zitat G.I. Taylor: The mechanism of plastic deformation of crystals. Part I – Theoretical, Proc. R. Soc. Lond. Ser. A 145, 362–387 (1934)ADSMATHCrossRef G.I. Taylor: The mechanism of plastic deformation of crystals. Part I – Theoretical, Proc. R. Soc. Lond. Ser. A 145, 362–387 (1934)ADSMATHCrossRef
39.36.
Zurück zum Zitat F.R.N. Babarro, Z.S. Basinski, D.B. Holt: The plasticity of pure single crystals, Adv. Phys. 13, 193–323 (1964)ADSCrossRef F.R.N. Babarro, Z.S. Basinski, D.B. Holt: The plasticity of pure single crystals, Adv. Phys. 13, 193–323 (1964)ADSCrossRef
39.37.
Zurück zum Zitat E. Peissker, P. Haasen, H. Alexander: Anisotropic plastic deformation of indium antimonide, Philos. Mag. 7, 1279 (1962)ADSCrossRef E. Peissker, P. Haasen, H. Alexander: Anisotropic plastic deformation of indium antimonide, Philos. Mag. 7, 1279 (1962)ADSCrossRef
39.38.
Zurück zum Zitat I. Yonenaga, K. Sumino: Effects of in impurity on the dynamic behavior of dislocations in GaAs, J. Appl. Phys. 62(4), 1212–1219 (1987)ADSCrossRef I. Yonenaga, K. Sumino: Effects of in impurity on the dynamic behavior of dislocations in GaAs, J. Appl. Phys. 62(4), 1212–1219 (1987)ADSCrossRef
39.39.
Zurück zum Zitat I. Yonenaga, K. Sumino: Mechanical properties and dislocation dynamics of GaP, J. Mater. Res. 4(2), 355–360 (1989)ADSCrossRef I. Yonenaga, K. Sumino: Mechanical properties and dislocation dynamics of GaP, J. Mater. Res. 4(2), 355–360 (1989)ADSCrossRef
39.40.
Zurück zum Zitat J. Völkl: Stress in the cooling crystal. In: Handbook of Crystal Growth, Vol. 2, ed. by D.T.J. Hurle (North Holland, Amsterdam 1994) pp. 823–874 J. Völkl: Stress in the cooling crystal. In: Handbook of Crystal Growth, Vol. 2, ed. by D.T.J. Hurle (North Holland, Amsterdam 1994) pp. 823–874
39.41.
Zurück zum Zitat H. Siethoff, W. Schröter: Work-hardening and dynamical recovery in silicon and germanium at high-temperatures and comparison with FCC metals, Scr. Metall. 17(3), 393–398 (1983)CrossRef H. Siethoff, W. Schröter: Work-hardening and dynamical recovery in silicon and germanium at high-temperatures and comparison with FCC metals, Scr. Metall. 17(3), 393–398 (1983)CrossRef
39.42.
Zurück zum Zitat H. Siethoff, R. Behrensmeier: Plasticity of undoped GaAs deformed under liquid encapsulation, J. Appl. Phys. 67(8), 3673–3680 (1990)ADSCrossRef H. Siethoff, R. Behrensmeier: Plasticity of undoped GaAs deformed under liquid encapsulation, J. Appl. Phys. 67(8), 3673–3680 (1990)ADSCrossRef
39.43.
Zurück zum Zitat H. Siethoff, K. Ahlborn, H.G. Brion, J. Völkl: Dynamical recovery and self-diffusion in InP, Philos. Mag. A 57(2), 235–244 (1988)ADSCrossRef H. Siethoff, K. Ahlborn, H.G. Brion, J. Völkl: Dynamical recovery and self-diffusion in InP, Philos. Mag. A 57(2), 235–244 (1988)ADSCrossRef
39.44.
Zurück zum Zitat H. Siethoff, W. Schröeter: New phenomena in the plasticity of semiconductors and FCC metals at high temperatures, Z. Metall. 75(7), 475–491 (1984) H. Siethoff, W. Schröeter: New phenomena in the plasticity of semiconductors and FCC metals at high temperatures, Z. Metall. 75(7), 475–491 (1984)
39.45.
Zurück zum Zitat A.K. Mukherjee, J.E. Bird, J.E. Dorn: Experimental correlations for high temperature creep, ASM Transactions 62, 155–179 (1969) A.K. Mukherjee, J.E. Bird, J.E. Dorn: Experimental correlations for high temperature creep, ASM Transactions 62, 155–179 (1969)
39.46.
Zurück zum Zitat C.R. Barrett, W.D. Nix: A Model for steady state creep based on the motion of jogged screw dislocations, Acta Metall. 13, 1247–1258 (1965)CrossRef C.R. Barrett, W.D. Nix: A Model for steady state creep based on the motion of jogged screw dislocations, Acta Metall. 13, 1247–1258 (1965)CrossRef
39.47.
Zurück zum Zitat H.G. Brion, H. Siethoff, W. Schröter: New stages in stress–strain curves of germanium at high-temperatures, Philos. Mag. A 43(6), 1505–1513 (1981)ADSCrossRef H.G. Brion, H. Siethoff, W. Schröter: New stages in stress–strain curves of germanium at high-temperatures, Philos. Mag. A 43(6), 1505–1513 (1981)ADSCrossRef
39.48.
Zurück zum Zitat H. Siethoff: Cross-slip in the high-temperature deformation of germanium, silicon and indium-antimonide, Philos. Mag. A 47(5), 657–669 (1983)ADSCrossRef H. Siethoff: Cross-slip in the high-temperature deformation of germanium, silicon and indium-antimonide, Philos. Mag. A 47(5), 657–669 (1983)ADSCrossRef
39.49.
Zurück zum Zitat B. Escaig: Cross-slip processes in the fcc structure. In: Dislocation Dynamics, ed. by A.R. Rosenfield, R. Alan (McGraw-Hill, London 1968) pp. 655–677 B. Escaig: Cross-slip processes in the fcc structure. In: Dislocation Dynamics, ed. by A.R. Rosenfield, R. Alan (McGraw-Hill, London 1968) pp. 655–677
39.50.
Zurück zum Zitat D. Maroudas, R.A. Brown: On the prediction of dislocation formation in semiconductor crystals grown from the melt – Analysis of the Haasen model for plastic deformation dynamics, J. Cryst. Growth 108, 399–415 (1991)ADSCrossRef D. Maroudas, R.A. Brown: On the prediction of dislocation formation in semiconductor crystals grown from the melt – Analysis of the Haasen model for plastic deformation dynamics, J. Cryst. Growth 108, 399–415 (1991)ADSCrossRef
39.51.
Zurück zum Zitat C.T. Tsai: On the finite-element modeling of dislocation dynamics during semiconductor-crystal growth, J. Cryst. Growth 113, 499–507 (1991)ADSCrossRef C.T. Tsai: On the finite-element modeling of dislocation dynamics during semiconductor-crystal growth, J. Cryst. Growth 113, 499–507 (1991)ADSCrossRef
39.52.
Zurück zum Zitat C.T. Tsai, A.N. Gulluoglu, C.S. Hertley: A crystallographic methodology for modeling dislocation dynamics in GaAs crystals grown from the melt, J. Appl. Phys. 73, 1650–1656 (1993)ADSCrossRef C.T. Tsai, A.N. Gulluoglu, C.S. Hertley: A crystallographic methodology for modeling dislocation dynamics in GaAs crystals grown from the melt, J. Appl. Phys. 73, 1650–1656 (1993)ADSCrossRef
39.53.
Zurück zum Zitat J.C. Lambropoulos, C.H. Wu: Mechanics of shaped crystal growth from the melt, J. Mater. Res. 11, 2163–2176 (1996)ADSCrossRef J.C. Lambropoulos, C.H. Wu: Mechanics of shaped crystal growth from the melt, J. Mater. Res. 11, 2163–2176 (1996)ADSCrossRef
39.54.
Zurück zum Zitat N. Miyazaki, Y. Kuroda: Dislocation density simulations for bulk single crystal growth process, Met. Mater. Int. 4(4), 883–890 (1998)CrossRef N. Miyazaki, Y. Kuroda: Dislocation density simulations for bulk single crystal growth process, Met. Mater. Int. 4(4), 883–890 (1998)CrossRef
39.55.
Zurück zum Zitat J.C. Moosbrugger: Continuum slip viscoplasticity with the Haasen constitutive model – application to single-crystal inelasticity, Int. J. Plast. 11, 799–826 (1995)MATHCrossRef J.C. Moosbrugger: Continuum slip viscoplasticity with the Haasen constitutive model – application to single-crystal inelasticity, Int. J. Plast. 11, 799–826 (1995)MATHCrossRef
39.56.
Zurück zum Zitat J.C. Moosbrugger, A. Levy: Constitutive modelling for CdTe single-crystals, Metall. Mater. Trans. A 26(10), 2687–2697 (1995)CrossRef J.C. Moosbrugger, A. Levy: Constitutive modelling for CdTe single-crystals, Metall. Mater. Trans. A 26(10), 2687–2697 (1995)CrossRef
39.57.
Zurück zum Zitat H. Chung, W. Si, M. Dudley, A. Anselmo, D.F. Bliss, A. Maniatty, H. Zhang, V. Prasad: Characterization of structural defects in MLEK grown InP single crystals using synchotron beam x-ray topography, J. Cryst. Growth 174(1–4), 230–237 (1997)ADSCrossRef H. Chung, W. Si, M. Dudley, A. Anselmo, D.F. Bliss, A. Maniatty, H. Zhang, V. Prasad: Characterization of structural defects in MLEK grown InP single crystals using synchotron beam x-ray topography, J. Cryst. Growth 174(1–4), 230–237 (1997)ADSCrossRef
39.58.
Zurück zum Zitat H. Chung, W. Si, M. Dudley, D.F. Bliss, R. Kalan, A. Maniatty, H. Zhang, V. Prasad: Characterization of defect structures in magnetic liquid encapsulated Kyropoulos grown InP single crystals, J. Cryst. Growth 181(1-2), 17–25 (1997)ADSCrossRef H. Chung, W. Si, M. Dudley, D.F. Bliss, R. Kalan, A. Maniatty, H. Zhang, V. Prasad: Characterization of defect structures in magnetic liquid encapsulated Kyropoulos grown InP single crystals, J. Cryst. Growth 181(1-2), 17–25 (1997)ADSCrossRef
39.59.
Zurück zum Zitat H. Steinhardt, P. Haasen: Creep and dislocation velocities in GaAs, Phys. Status Solidi (a) 49, 93–101 (1978)ADSCrossRef H. Steinhardt, P. Haasen: Creep and dislocation velocities in GaAs, Phys. Status Solidi (a) 49, 93–101 (1978)ADSCrossRef
39.60.
Zurück zum Zitat I. Yonenaga, U. Unose, K. Sumino: Mechanical properties of GaAs crystals, J. Mater. Res. 2, 252–261 (1987)ADSCrossRef I. Yonenaga, U. Unose, K. Sumino: Mechanical properties of GaAs crystals, J. Mater. Res. 2, 252–261 (1987)ADSCrossRef
39.61.
Zurück zum Zitat A. George, C. Escaravage, G. Champier, W. Schröter: Velocities of screw and 60°-dislocations in silicon, Phys. Status Solidi (b) 53, 483–496 (1972)ADSCrossRef A. George, C. Escaravage, G. Champier, W. Schröter: Velocities of screw and 60°-dislocations in silicon, Phys. Status Solidi (b) 53, 483–496 (1972)ADSCrossRef
39.62.
Zurück zum Zitat M. Imai, K. Sumino: Insitu x-ray topographic study of the dislocation mobility in high-purity and impurity-doped silicon-crystals, Philos. Mag. A 47(4), 599–621 (1983)ADSCrossRef M. Imai, K. Sumino: Insitu x-ray topographic study of the dislocation mobility in high-purity and impurity-doped silicon-crystals, Philos. Mag. A 47(4), 599–621 (1983)ADSCrossRef
39.63.
Zurück zum Zitat B.Y. Farber, V.I. Nikitenko: Change of dislocation mobility characteristics in silicon single-crystals at elevated-temperatures, Phys. Status Solidi (a) 73(1), K141–144 (1982)ADSCrossRef B.Y. Farber, V.I. Nikitenko: Change of dislocation mobility characteristics in silicon single-crystals at elevated-temperatures, Phys. Status Solidi (a) 73(1), K141–144 (1982)ADSCrossRef
39.64.
Zurück zum Zitat I. Yonenaga, K. Sumino: Dislocation velocity in indium-phospide, Appl. Phys. Lett. 58(1), 48–50 (1991)ADSCrossRef I. Yonenaga, K. Sumino: Dislocation velocity in indium-phospide, Appl. Phys. Lett. 58(1), 48–50 (1991)ADSCrossRef
39.65.
Zurück zum Zitat H. Nagai: Dislocation velocities in indium phospide, Jpn. J. Appl. Phys. 20(4), 793–794 (1981)ADSCrossRef H. Nagai: Dislocation velocities in indium phospide, Jpn. J. Appl. Phys. 20(4), 793–794 (1981)ADSCrossRef
39.66.
Zurück zum Zitat K. Maeda, S. Takeuchi: Recombination enhanced glide in InP single crystals, Appl. Phys. Lett. 42(8), 664–666 (1983)ADSCrossRef K. Maeda, S. Takeuchi: Recombination enhanced glide in InP single crystals, Appl. Phys. Lett. 42(8), 664–666 (1983)ADSCrossRef
39.67.
Zurück zum Zitat F. Louchet: On the mobility of dislocations in silicon by insitu straining in a high-voltage electron-microscope, Philos. Mag. 43(5), 1289–1297 (1981)ADSCrossRef F. Louchet: On the mobility of dislocations in silicon by insitu straining in a high-voltage electron-microscope, Philos. Mag. 43(5), 1289–1297 (1981)ADSCrossRef
39.68.
Zurück zum Zitat V. Celli, M. Kabler, T. Ninoyama, R. Thomson: Theory of dislocation mobility in semiconductors, Phys. Rev. 131(1), 58–72 (1963)ADSCrossRef V. Celli, M. Kabler, T. Ninoyama, R. Thomson: Theory of dislocation mobility in semiconductors, Phys. Rev. 131(1), 58–72 (1963)ADSCrossRef
39.69.
Zurück zum Zitat V.V. Rybin, A.N. Orlov: Theory of dislocation motion in low-velocity range, Sov. Phys. Solid State 11, 2635–2641 (1970) V.V. Rybin, A.N. Orlov: Theory of dislocation motion in low-velocity range, Sov. Phys. Solid State 11, 2635–2641 (1970)
39.70.
Zurück zum Zitat S. Öberg, P.K. Sitch, R. Jones, M.I. Heggie: First-principles calculations of the energy barrier to dislocation motion in Si and GaAs, Phys. Rev. B 51(19), 13138–13145 (1995)ADSCrossRef S. Öberg, P.K. Sitch, R. Jones, M.I. Heggie: First-principles calculations of the energy barrier to dislocation motion in Si and GaAs, Phys. Rev. B 51(19), 13138–13145 (1995)ADSCrossRef
39.71.
Zurück zum Zitat V.V. Bulatov, S. Yip, A.S. Argon: Atomic modes of dislocation mobility in silicon, Philos. Mag. A 72(2), 453–496 (1995)ADSCrossRef V.V. Bulatov, S. Yip, A.S. Argon: Atomic modes of dislocation mobility in silicon, Philos. Mag. A 72(2), 453–496 (1995)ADSCrossRef
39.72.
Zurück zum Zitat H.R. Kolar, J.C.H. Spencer, H. Alexander: Observation of moving dislocation kinks and unpinning, Phys. Rev. Lett. 77(19), 4031–4034 (1996)ADSCrossRef H.R. Kolar, J.C.H. Spencer, H. Alexander: Observation of moving dislocation kinks and unpinning, Phys. Rev. Lett. 77(19), 4031–4034 (1996)ADSCrossRef
39.73.
Zurück zum Zitat H.J. Möller: The movement of dissociated dislocations in the diamond–cubic structure, Acta Metall. 26, 963–973 (1977)CrossRef H.J. Möller: The movement of dissociated dislocations in the diamond–cubic structure, Acta Metall. 26, 963–973 (1977)CrossRef
39.74.
Zurück zum Zitat P. Haasen: Kink formation in charged dislocation, Phys. Status Solidi (a) 28(1), 145–155 (1975)ADSCrossRef P. Haasen: Kink formation in charged dislocation, Phys. Status Solidi (a) 28(1), 145–155 (1975)ADSCrossRef
39.75.
Zurück zum Zitat P.B. Hirsch: Mechanism for the effect of doping on dislocation mobility, J. Phys. 40(6), 117–121 (1979) P.B. Hirsch: Mechanism for the effect of doping on dislocation mobility, J. Phys. 40(6), 117–121 (1979)
39.76.
Zurück zum Zitat K. Sumino, I. Yonenaga: Dislocation dynamics and mechanical behavior of elemental and compound semiconductors, Phys. Status Solidi (a) 138, 573–581 (1993)ADSCrossRef K. Sumino, I. Yonenaga: Dislocation dynamics and mechanical behavior of elemental and compound semiconductors, Phys. Status Solidi (a) 138, 573–581 (1993)ADSCrossRef
39.77.
Zurück zum Zitat K. Sumino, H. Harada: In situ x-ray topographic studies of the generation and the multiplication processes of dislocations in silicon crystals at elevated temperature, Philos. Mag. A 44(6), 1319–1334 (1981)ADSCrossRef K. Sumino, H. Harada: In situ x-ray topographic studies of the generation and the multiplication processes of dislocations in silicon crystals at elevated temperature, Philos. Mag. A 44(6), 1319–1334 (1981)ADSCrossRef
39.78.
Zurück zum Zitat P. Franciosi, A. Zaoui: Multislip in fcc. crystals: A theoretical approach compared with experimental data, Acta Metall. 30, 1627–1637 (1982)CrossRef P. Franciosi, A. Zaoui: Multislip in fcc. crystals: A theoretical approach compared with experimental data, Acta Metall. 30, 1627–1637 (1982)CrossRef
39.79.
Zurück zum Zitat A. Moulin, M. Condat, L.P. Kubin: Mesoscale modelling of the yield point properties of silicon crystals, Acta Metall. 47(10), 2879–2888 (1999) A. Moulin, M. Condat, L.P. Kubin: Mesoscale modelling of the yield point properties of silicon crystals, Acta Metall. 47(10), 2879–2888 (1999)
39.80.
Zurück zum Zitat H. Alexander, J.J. Crawford: Latent hardening of germanium crystals, Phys. Status Solidi (b) 222, 41–49 (2000)ADSCrossRef H. Alexander, J.J. Crawford: Latent hardening of germanium crystals, Phys. Status Solidi (b) 222, 41–49 (2000)ADSCrossRef
39.81.
Zurück zum Zitat A.A. Chernov: Modern Crystallography III. Crystal Growth (Springer, Berlin 1984)CrossRef A.A. Chernov: Modern Crystallography III. Crystal Growth (Springer, Berlin 1984)CrossRef
39.82.
Zurück zum Zitat H. Klapper: Generation and propagation of dislocations during crystal growth, Mater. Chem. Phys. 66, 101–109 (2000)CrossRef H. Klapper: Generation and propagation of dislocations during crystal growth, Mater. Chem. Phys. 66, 101–109 (2000)CrossRef
39.83.
Zurück zum Zitat G. Dhanaraj, B. Raghothamachar, J. Bai, H. Chung, M. Dudley: Synchrotron x-ray topographic characterization of defects in InP bulk crystals, Proc. Int. Conf. Indium Phosphide Relat. Mater. (2005) pp. 643–648 G. Dhanaraj, B. Raghothamachar, J. Bai, H. Chung, M. Dudley: Synchrotron x-ray topographic characterization of defects in InP bulk crystals, Proc. Int. Conf. Indium Phosphide Relat. Mater. (2005) pp. 643–648
39.84.
Zurück zum Zitat G.T. Brown, B. Cockayne, W.R. Macewan: Deformation behavior of single crystals of InP in uniaxial compression, J. Mater. Sci. 15, 1469–1477 (1980)ADSCrossRef G.T. Brown, B. Cockayne, W.R. Macewan: Deformation behavior of single crystals of InP in uniaxial compression, J. Mater. Sci. 15, 1469–1477 (1980)ADSCrossRef
39.85.
Zurück zum Zitat S. Pendurti: Modeling Dislocation Generation in High Pressure Czochralski Growth of InP Single Crystals. Ph.D. Thesis (State University of New York, Stony Brook 2003) S. Pendurti: Modeling Dislocation Generation in High Pressure Czochralski Growth of InP Single Crystals. Ph.D. Thesis (State University of New York, Stony Brook 2003)
39.86.
Zurück zum Zitat A.S. Jordan: Some thermal and mechanical properties of InP essential to crystal growth modeling, J. Cryst. Growth 71, 559–565 (1985)ADSCrossRef A.S. Jordan: Some thermal and mechanical properties of InP essential to crystal growth modeling, J. Cryst. Growth 71, 559–565 (1985)ADSCrossRef
39.87.
Zurück zum Zitat H. Siethoff: The plasticity of elemental and compound semiconductors, Semicond. Semimet. 37, 143–187 (1992)CrossRef H. Siethoff: The plasticity of elemental and compound semiconductors, Semicond. Semimet. 37, 143–187 (1992)CrossRef
39.88.
Zurück zum Zitat J.C. Simo, T.J.R. Hughes: Computational Inelasticity (Springer, New York 1998)MATH J.C. Simo, T.J.R. Hughes: Computational Inelasticity (Springer, New York 1998)MATH
39.89.
Zurück zum Zitat H. Zhang, V. Prasad: A multizone adaptive process model for low and high pressure crystal growth, J. Cryst. Growth 155, 47–65 (1995)ADSCrossRef H. Zhang, V. Prasad: A multizone adaptive process model for low and high pressure crystal growth, J. Cryst. Growth 155, 47–65 (1995)ADSCrossRef
39.90.
Zurück zum Zitat P. Rudolph, M. Jurisch: Bulk growth of GaAs – An overview, J. Cryst. Growth 199(1), 325–335 (1999)ADSCrossRef P. Rudolph, M. Jurisch: Bulk growth of GaAs – An overview, J. Cryst. Growth 199(1), 325–335 (1999)ADSCrossRef
39.91.
Zurück zum Zitat V.A. Antonov, V.G. Elsakov, T.I. Olkhovikova, V.V. Selin: Dislocations and 90°-twins in LEC-grown InP crystals, J. Cryst. Growth 235(1–4), 35–39 (2002)ADSCrossRef V.A. Antonov, V.G. Elsakov, T.I. Olkhovikova, V.V. Selin: Dislocations and 90°-twins in LEC-grown InP crystals, J. Cryst. Growth 235(1–4), 35–39 (2002)ADSCrossRef
39.92.
Zurück zum Zitat T.-C. Chen, H.-C. Wu, C.-I. Weng: The effect of interface shape on anisotropic thermal stress of bulk single crystal during Czochralski growth, J. Cryst. Growth 173, 367–379 (1997)ADSCrossRef T.-C. Chen, H.-C. Wu, C.-I. Weng: The effect of interface shape on anisotropic thermal stress of bulk single crystal during Czochralski growth, J. Cryst. Growth 173, 367–379 (1997)ADSCrossRef
39.93.
Zurück zum Zitat J. Matsui: Study of strain variation in LEC-grown GaAs bulk crystals by synchotron radiation x-ray, Appl. Surf. Sci. 50, 1–8 (1991)ADSCrossRef J. Matsui: Study of strain variation in LEC-grown GaAs bulk crystals by synchotron radiation x-ray, Appl. Surf. Sci. 50, 1–8 (1991)ADSCrossRef
39.94.
Zurück zum Zitat H.M. Buchheit, A. Khoukh, M. Bejar, S.K. Krawczyk, R.C. Blanchet: Residual strain mapping in III–V materials by spectrally resolving scanning photoluminescence, Microelectron. J. 30(7), 651–657 (1999)CrossRef H.M. Buchheit, A. Khoukh, M. Bejar, S.K. Krawczyk, R.C. Blanchet: Residual strain mapping in III–V materials by spectrally resolving scanning photoluminescence, Microelectron. J. 30(7), 651–657 (1999)CrossRef
39.95.
Zurück zum Zitat S. Pendurti, V. Prasad, H. Zhang: Modelling dislocation generation in high pressure Czochralski growth of InP single crystals: Part I. Construction of a visco-plastic deformation model, Model. Simul. Mater. Sci. Eng. 13, 249–266 (2005)ADSCrossRef S. Pendurti, V. Prasad, H. Zhang: Modelling dislocation generation in high pressure Czochralski growth of InP single crystals: Part I. Construction of a visco-plastic deformation model, Model. Simul. Mater. Sci. Eng. 13, 249–266 (2005)ADSCrossRef
39.96.
Zurück zum Zitat V. Prasad, H. Zhang: Transport phenomena in Czochralski crystal growth processes, Adv. Heat Transf. 30, 313–435 (1997)CrossRef V. Prasad, H. Zhang: Transport phenomena in Czochralski crystal growth processes, Adv. Heat Transf. 30, 313–435 (1997)CrossRef
39.97.
Zurück zum Zitat A.G. Elliot, A. Flat, D.A. Vanderwater: Silicon incorporation in LEC growth of single-crystal gallium-arsenide, J. Cryst. Growth 121(3), 349–359 (1992)ADSCrossRef A.G. Elliot, A. Flat, D.A. Vanderwater: Silicon incorporation in LEC growth of single-crystal gallium-arsenide, J. Cryst. Growth 121(3), 349–359 (1992)ADSCrossRef
39.98.
Zurück zum Zitat M. Neubert, P. Rudolph: Growth of semi-insulating GaAs crystals in low temperature gradients by using the vapour pressure controlled Czochralski method (VCZ), Prog. Cryst. Growth Charact. Mater. 43(2/3), 119–185 (2001)CrossRef M. Neubert, P. Rudolph: Growth of semi-insulating GaAs crystals in low temperature gradients by using the vapour pressure controlled Czochralski method (VCZ), Prog. Cryst. Growth Charact. Mater. 43(2/3), 119–185 (2001)CrossRef
39.99.
Zurück zum Zitat G. Müller, J. Völkl, E. Tomzig: Thermal analysis of LEC InP growth, J. Cryst. Growth 64(1), 40–47 (1983)ADSCrossRef G. Müller, J. Völkl, E. Tomzig: Thermal analysis of LEC InP growth, J. Cryst. Growth 64(1), 40–47 (1983)ADSCrossRef
39.100.
Zurück zum Zitat A.R. Von Neida, A.S. Jordan: Reducing dislocations in GaAs and InP, J. Met. 38, 35–40 (1986) A.R. Von Neida, A.S. Jordan: Reducing dislocations in GaAs and InP, J. Met. 38, 35–40 (1986)
39.101.
Zurück zum Zitat A.G. Elliot, C.L. Wei, R. Farraro, G. Woolhouse, M. Scott, R. Hiskes: Low dislocation density, large diameter, liquid encapsulated Czochralski growth of GaAs, J. Cryst. Growth 70, 169–178 (1984)ADSCrossRef A.G. Elliot, C.L. Wei, R. Farraro, G. Woolhouse, M. Scott, R. Hiskes: Low dislocation density, large diameter, liquid encapsulated Czochralski growth of GaAs, J. Cryst. Growth 70, 169–178 (1984)ADSCrossRef
39.102.
Zurück zum Zitat K. Katagiri, S. Yamazaki, A. Takagi, O. Oda, H. Araki, I. Tsuboya: LEC growth of large diameter InP single crystals doped with Sn and with S, Inst. Phys. Conf. Ser. 79, 67–72 (1986) K. Katagiri, S. Yamazaki, A. Takagi, O. Oda, H. Araki, I. Tsuboya: LEC growth of large diameter InP single crystals doped with Sn and with S, Inst. Phys. Conf. Ser. 79, 67–72 (1986)
39.103.
Zurück zum Zitat R. Hirano, M. Uchida: Reduction of dislocation densities in InP single crystals by the LEC method using thermal baffles, J. Electron. Mater. 25, 347–351 (1996)ADSCrossRef R. Hirano, M. Uchida: Reduction of dislocation densities in InP single crystals by the LEC method using thermal baffles, J. Electron. Mater. 25, 347–351 (1996)ADSCrossRef
39.104.
Zurück zum Zitat R. Hirano: Growth of low etch pit density homogeneous 2′′ InP crystals using a newly developed thermal baffle, Jpn. J. Appl. Phys. 38(2B), 969–971 (1999)ADSMathSciNetCrossRef R. Hirano: Growth of low etch pit density homogeneous 2′′ InP crystals using a newly developed thermal baffle, Jpn. J. Appl. Phys. 38(2B), 969–971 (1999)ADSMathSciNetCrossRef
39.105.
Zurück zum Zitat K. Terashima, T. Fukuda: A new magnetic–field applied pulling apparatus for LEC GaAs single-crystal growth, J. Cryst. Growth 63, 423–425 (1983)ADSCrossRef K. Terashima, T. Fukuda: A new magnetic–field applied pulling apparatus for LEC GaAs single-crystal growth, J. Cryst. Growth 63, 423–425 (1983)ADSCrossRef
39.106.
Zurück zum Zitat H. Miyairi, T. Inada, M. Eguchi, T. Fukuda: Growth and properties of InP single crystals grown by the magnetic-field applied LEC method, J. Cryst. Growth 79(1–3), 291–295 (1986)ADSCrossRef H. Miyairi, T. Inada, M. Eguchi, T. Fukuda: Growth and properties of InP single crystals grown by the magnetic-field applied LEC method, J. Cryst. Growth 79(1–3), 291–295 (1986)ADSCrossRef
39.107.
Zurück zum Zitat J. Osaka, H. Kohda, T. Kobayashi, K. Hoshikawa: Homogeneity of vertical magnetic-field applied LEC GaAs crystal, Jpn. J. Appl. Phys. Part 2 – Lett. 23(4), L194–197 (1984) J. Osaka, H. Kohda, T. Kobayashi, K. Hoshikawa: Homogeneity of vertical magnetic-field applied LEC GaAs crystal, Jpn. J. Appl. Phys. Part 2 – Lett. 23(4), L194–197 (1984)
39.108.
Zurück zum Zitat S. Ozawa, T. Kimura, J. Kobayashi, T. Fukuda: Programmed magnetic-field applied liquid encapsulated Czochralski crystal-growth, Appl. Phys. Lett. 50(6), 329–331 (1987)ADSCrossRef S. Ozawa, T. Kimura, J. Kobayashi, T. Fukuda: Programmed magnetic-field applied liquid encapsulated Czochralski crystal-growth, Appl. Phys. Lett. 50(6), 329–331 (1987)ADSCrossRef
39.109.
Zurück zum Zitat H. Kohda, K. Yamada, H. Nakanishi, T. Kobayashi, J. Osaka, K. Hoshikawa: Crystal-growth of completely dislocation-free and striation-free GaAs, J. Cryst. Growth 71(3), 813–816 (1985)ADSCrossRef H. Kohda, K. Yamada, H. Nakanishi, T. Kobayashi, J. Osaka, K. Hoshikawa: Crystal-growth of completely dislocation-free and striation-free GaAs, J. Cryst. Growth 71(3), 813–816 (1985)ADSCrossRef
39.110.
Zurück zum Zitat S. Pendurti, H. Zhang, V. Prasad: Modeling dislocation generation in high pressure Czochralski growth of InP single crystals: Part II, Model. Simul. Mater. Sci. Eng. 13, 267–297 (2005)ADSCrossRef S. Pendurti, H. Zhang, V. Prasad: Modeling dislocation generation in high pressure Czochralski growth of InP single crystals: Part II, Model. Simul. Mater. Sci. Eng. 13, 267–297 (2005)ADSCrossRef
Metadaten
Titel
Models for Stress and Dislocation Generation in Melt Based Compound Crystal Growth
verfasst von
Vishwanath (Vish) Prasad
Srinivas Pendurti
Copyright-Jahr
2010
DOI
https://doi.org/10.1007/978-3-540-74761-1_39

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.