Skip to main content

2020 | OriginalPaper | Buchkapitel

6. Models for the Cross-Linked Calcium Aluminate Silicate Hydrate (C–A–S–H) Gel

verfasst von : Dongshuai Hou

Erschienen in: Molecular Simulation on Cement-Based Materials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

How to lower the environmental footprint in the construction industry challenges the researchers in this field. The key measure should lie in the reduction of cement usage, since the manufacture of cement is a high energy cost industry that results in about 6–8% of the yearly man-made global CO2 emissions (Gartner and Hirao in Cem Concr Res 78:126–142, 2015 [1]). One common practice is to prepare concrete with cement clinker partially substituted by supplementary cementitious materials (SCMs) (e.g., blast furnace slag and fly ash are also industrial wastes).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gartner, E., & Hirao, H. (2015). A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete Research, 78, 126–142.CrossRef Gartner, E., & Hirao, H. (2015). A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete Research, 78, 126–142.CrossRef
2.
Zurück zum Zitat Gao, Y., Hu, C., Zhang, Y., Li, Z., & Pan, J. (2018). Investigation on microstructure and microstructural elastic properties of mortar incorporating fly ash. Cement & Concrete Composites, 86. Gao, Y., Hu, C., Zhang, Y., Li, Z., & Pan, J. (2018). Investigation on microstructure and microstructural elastic properties of mortar incorporating fly ash. Cement & Concrete Composites, 86.
3.
Zurück zum Zitat Hu, C., Li, Z., Gao, Y., Han, Y., & Zhang, Y. (2014). Investigation on microstructures of cementitious composites incorporating slag. Advances in Cement Research, 26(26), 222–232.CrossRef Hu, C., Li, Z., Gao, Y., Han, Y., & Zhang, Y. (2014). Investigation on microstructures of cementitious composites incorporating slag. Advances in Cement Research, 26(26), 222–232.CrossRef
4.
Zurück zum Zitat Hu, C. (2014). Microstructure and mechanical properties of fly ash blended cement pastes. Construction and Building Materials, 73, 618–625.CrossRef Hu, C. (2014). Microstructure and mechanical properties of fly ash blended cement pastes. Construction and Building Materials, 73, 618–625.CrossRef
5.
Zurück zum Zitat Ogawa, S., Nozaki, T., Yamada, K., Hirao, H., & Hooton, R. D. (2012). Improvement on sulfate resistance of blended cement with high alumina slag. Cement and Concrete Research, 42(2), 244–251.CrossRef Ogawa, S., Nozaki, T., Yamada, K., Hirao, H., & Hooton, R. D. (2012). Improvement on sulfate resistance of blended cement with high alumina slag. Cement and Concrete Research, 42(2), 244–251.CrossRef
6.
Zurück zum Zitat Juenger, M. C. G., & Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and Concrete Research, 78, 71–80.CrossRef Juenger, M. C. G., & Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and Concrete Research, 78, 71–80.CrossRef
7.
Zurück zum Zitat Provis, J. L., & Bernal, S. A. (2014). Geopolymers and related alkali-activated materials. Annual Review of Materials Research, 44(44), 299–327.CrossRef Provis, J. L., & Bernal, S. A. (2014). Geopolymers and related alkali-activated materials. Annual Review of Materials Research, 44(44), 299–327.CrossRef
8.
Zurück zum Zitat Shi, C., Roy, D., & Krivenko, P. (2005). Alkali-activated cements and concretes. Shi, C., Roy, D., & Krivenko, P. (2005). Alkali-activated cements and concretes.
9.
Zurück zum Zitat Lothenbach, B., Scrivener, K., & Hooton, R. D. (2011). Supplementary cementitious materials. Cement and Concrete Research, 41(12), 1244–1256.CrossRef Lothenbach, B., Scrivener, K., & Hooton, R. D. (2011). Supplementary cementitious materials. Cement and Concrete Research, 41(12), 1244–1256.CrossRef
10.
Zurück zum Zitat Chen, W., & Brouwers, H. J. H. (2007). The hydration of slag. Part 1: Reaction models for alkali-activated slag. Journal of Materials Science, 42(2), 428–443.CrossRef Chen, W., & Brouwers, H. J. H. (2007). The hydration of slag. Part 1: Reaction models for alkali-activated slag. Journal of Materials Science, 42(2), 428–443.CrossRef
11.
Zurück zum Zitat Jackson, M. D., Chae, S. R., Mulcahy, S. R., Meral, C., Taylor, R., Li, P., et al. (2012). Unlocking the secrets of Al-tobermorite in Roman seawater concrete. American Mineralogist, 98(10), 1669–1687.CrossRef Jackson, M. D., Chae, S. R., Mulcahy, S. R., Meral, C., Taylor, R., Li, P., et al. (2012). Unlocking the secrets of Al-tobermorite in Roman seawater concrete. American Mineralogist, 98(10), 1669–1687.CrossRef
12.
Zurück zum Zitat Faucon, P., Delagrave, A., Petit, J. C., Richet, C., Marchand, J. M., & Zanni, H. (1999). Aluminum incorporation in calcium silicate hydrates (C–S–H) depending on their Ca/Si ratio. Journal of Physical Chemistry B, 103(37). Faucon, P., Delagrave, A., Petit, J. C., Richet, C., Marchand, J. M., & Zanni, H. (1999). Aluminum incorporation in calcium silicate hydrates (C–S–H) depending on their Ca/Si ratio. Journal of Physical Chemistry B, 103(37).
13.
Zurück zum Zitat Sun, G. K., Young, J. F., & Kirkpatrick, R. J. (2006). The role of Al in C–S–H: NMR, XRD, and compositional results for precipitated samples. Cement and Concrete Research, 36(1), 18–29.CrossRef Sun, G. K., Young, J. F., & Kirkpatrick, R. J. (2006). The role of Al in C–S–H: NMR, XRD, and compositional results for precipitated samples. Cement and Concrete Research, 36(1), 18–29.CrossRef
14.
Zurück zum Zitat Andersen, M. D., Jakobsen, H. J., & Skibsted, J. (2006). A new aluminium-hydrate species in hydrated Portland cements characterized by Al and Si MAS NMR spectroscopy. Cement and Concrete Research, 36(1), 3–17.CrossRef Andersen, M. D., Jakobsen, H. J., & Skibsted, J. (2006). A new aluminium-hydrate species in hydrated Portland cements characterized by Al and Si MAS NMR spectroscopy. Cement and Concrete Research, 36(1), 3–17.CrossRef
15.
Zurück zum Zitat Manzano, H., Dolado, J. S., & Ayuela, A. (2009). Aluminum incorporation to dreierketten silicate chains. Journal of Physical Chemistry B, 113(9), 2832.CrossRef Manzano, H., Dolado, J. S., & Ayuela, A. (2009). Aluminum incorporation to dreierketten silicate chains. Journal of Physical Chemistry B, 113(9), 2832.CrossRef
16.
Zurück zum Zitat Pardal, X., Brunet, F., Charpentier, T., Pochard, I., & Nonat, A. (2012). 27Al and 29Si solid-state NMR characterization of calcium–aluminosilicate–hydrate. Inorganic Chemistry, 51(3), 1827.CrossRef Pardal, X., Brunet, F., Charpentier, T., Pochard, I., & Nonat, A. (2012). 27Al and 29Si solid-state NMR characterization of calcium–aluminosilicate–hydrate. Inorganic Chemistry, 51(3), 1827.CrossRef
17.
Zurück zum Zitat L’Hôpital, E., Lothenbach, B., Saout, G. L., Kulik, D., & Scrivener, K. (2015). Incorporation of aluminium in calcium–silicate–hydrates. Cement and Concrete Research, 75, 91–103.CrossRef L’Hôpital, E., Lothenbach, B., Saout, G. L., Kulik, D., & Scrivener, K. (2015). Incorporation of aluminium in calcium–silicate–hydrates. Cement and Concrete Research, 75, 91–103.CrossRef
18.
Zurück zum Zitat Churakov, S. V., & Labbez, C. (2017). Thermodynamics and molecular mechanism of Al incorporation in calcium silicate hydrates. Journal of Physical Chemistry C, 121(8). Churakov, S. V., & Labbez, C. (2017). Thermodynamics and molecular mechanism of Al incorporation in calcium silicate hydrates. Journal of Physical Chemistry C, 121(8).
19.
Zurück zum Zitat Richardson, I. G. (2004). Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaol. Cement and Concrete Research, 34(9), 1733–1777.CrossRef Richardson, I. G. (2004). Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaol. Cement and Concrete Research, 34(9), 1733–1777.CrossRef
20.
Zurück zum Zitat Myers, R. J., Bernal, S. A., Nicolas, R. S., & Provis, J. L. (2013). Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The cross-linked substituted tobermorite model. Langmuir, 29(17), 5294–5306.CrossRef Myers, R. J., Bernal, S. A., Nicolas, R. S., & Provis, J. L. (2013). Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The cross-linked substituted tobermorite model. Langmuir, 29(17), 5294–5306.CrossRef
21.
Zurück zum Zitat Taylor, H. F. W. (1986). Proposed structure for calcium silicate hydrate gel. Journal of the American Ceramic Society, 69(6), 464–467.CrossRef Taylor, H. F. W. (1986). Proposed structure for calcium silicate hydrate gel. Journal of the American Ceramic Society, 69(6), 464–467.CrossRef
22.
Zurück zum Zitat Taylor, H. F. W. (1956). Relationships between calcium silicates and clay minerals. Clay Minerals, 3(16), 98–111.CrossRef Taylor, H. F. W. (1956). Relationships between calcium silicates and clay minerals. Clay Minerals, 3(16), 98–111.CrossRef
23.
Zurück zum Zitat Richardson, I. G., Brough, A. R., Brydson, R., Groves, G. W., & Dobson, C. M. (1993). Location of aluminum in substituted calcium silicate hydrate (C–S–H) gels as determined by 29Si and 27Al NMR and EELS. Journal of the American Ceramic Society, 76(9), 2285–2288.CrossRef Richardson, I. G., Brough, A. R., Brydson, R., Groves, G. W., & Dobson, C. M. (1993). Location of aluminum in substituted calcium silicate hydrate (C–S–H) gels as determined by 29Si and 27Al NMR and EELS. Journal of the American Ceramic Society, 76(9), 2285–2288.CrossRef
24.
Zurück zum Zitat Pegado, L., Labbez, C., & Churakov, S. V. (2014). Mechanism of aluminium incorporation into C–S–H from ab initio calculations. Journal of Materials Chemistry A, 2(10), 3477–3483.CrossRef Pegado, L., Labbez, C., & Churakov, S. V. (2014). Mechanism of aluminium incorporation into C–S–H from ab initio calculations. Journal of Materials Chemistry A, 2(10), 3477–3483.CrossRef
25.
Zurück zum Zitat Bernal, S. A., Provis, J. L., Walkley, B., Nicolas, R. S., Gehman, J. D., Brice, D. G., et al. (2013). Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cement and Concrete Research, 53(2), 127–144.CrossRef Bernal, S. A., Provis, J. L., Walkley, B., Nicolas, R. S., Gehman, J. D., Brice, D. G., et al. (2013). Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cement and Concrete Research, 53(2), 127–144.CrossRef
26.
Zurück zum Zitat Myers, R. J., L’Hôpital, E., Provis, J. L., & Lothenbach, B. (2015). Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions. Cement and Concrete Research, 68, 83–93.CrossRef Myers, R. J., L’Hôpital, E., Provis, J. L., & Lothenbach, B. (2015). Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions. Cement and Concrete Research, 68, 83–93.CrossRef
27.
Zurück zum Zitat Ulm, F. J., Vandamme, M., Bobko, C., Ortega, J. A., Tai, K., & Ortiz, C. (2007). Statistical indentation techniques for hydrated nanocomposites: Concrete, bone, and shale. Journal of the American Ceramic Society, 90(9), 2677–2692.CrossRef Ulm, F. J., Vandamme, M., Bobko, C., Ortega, J. A., Tai, K., & Ortiz, C. (2007). Statistical indentation techniques for hydrated nanocomposites: Concrete, bone, and shale. Journal of the American Ceramic Society, 90(9), 2677–2692.CrossRef
28.
Zurück zum Zitat Puertas, F., Palacios, M., Manzano, H., Dolado, J. S., Rico, A., & Rodríguez, J. (2011). A model for the C–A–S–H gel formed in alkali-activated slag cements. Journal of the European Ceramic Society, 31(12), 2043–2056.CrossRef Puertas, F., Palacios, M., Manzano, H., Dolado, J. S., Rico, A., & Rodríguez, J. (2011). A model for the C–A–S–H gel formed in alkali-activated slag cements. Journal of the European Ceramic Society, 31(12), 2043–2056.CrossRef
29.
Zurück zum Zitat Geng, G., Myers, R. J., Li, J., Maboudian, R., Carraro, C., Shapiro, D. A., et al. (2017). Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate. Scientific Reports, 7. Geng, G., Myers, R. J., Li, J., Maboudian, R., Carraro, C., Shapiro, D. A., et al. (2017). Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate. Scientific Reports, 7.
30.
Zurück zum Zitat Shahsavari, R., Buehler, M. J., Pellenq, J. M., & Ulm, F. J. (2009). First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite. Journal of the American Ceramic Society, 92(10), 2323–2330.CrossRef Shahsavari, R., Buehler, M. J., Pellenq, J. M., & Ulm, F. J. (2009). First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite. Journal of the American Ceramic Society, 92(10), 2323–2330.CrossRef
31.
Zurück zum Zitat Merlino, S., Bonaccorsi, E., & Armbruster, T. (2001). The real structure of tobermorite 11Å: Normal and anomalous forms, OD character and polytypic modifications. European Journal of Mineralogy, 13(3), 65–80.CrossRef Merlino, S., Bonaccorsi, E., & Armbruster, T. (2001). The real structure of tobermorite 11Å: Normal and anomalous forms, OD character and polytypic modifications. European Journal of Mineralogy, 13(3), 65–80.CrossRef
32.
Zurück zum Zitat Hamid, S. A. (1981). The crystal structure of the 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·1H2O. Zeitschrift für Kristallographie—Crystalline Materials, 154(1–4), 189–198. Hamid, S. A. (1981). The crystal structure of the 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·1H2O. Zeitschrift für Kristallographie—Crystalline Materials, 154(1–4), 189–198.
33.
Zurück zum Zitat Manzano, H., Moeini, S., Marinelli, F., Duin, A. C. T. V., Ulm, F. J., & Pellenq, J. M. (2012). Confined water dissociation in microporous defective silicates: Mechanism, dipole distribution, and impact on substrate properties. Journal of the American Chemical Society, 134(4), 2208–2215.CrossRef Manzano, H., Moeini, S., Marinelli, F., Duin, A. C. T. V., Ulm, F. J., & Pellenq, J. M. (2012). Confined water dissociation in microporous defective silicates: Mechanism, dipole distribution, and impact on substrate properties. Journal of the American Chemical Society, 134(4), 2208–2215.CrossRef
34.
Zurück zum Zitat Pellenq, R. J., Kushima, A., Shahsavari, R., Van Vliet, K. J., Buehler, M. J., Yip, S., et al. (2009). A realistic molecular model of cement hydrates. Proceedings of the National Academy of Sciences of the United States of America, 106(38), 16102.CrossRef Pellenq, R. J., Kushima, A., Shahsavari, R., Van Vliet, K. J., Buehler, M. J., Yip, S., et al. (2009). A realistic molecular model of cement hydrates. Proceedings of the National Academy of Sciences of the United States of America, 106(38), 16102.CrossRef
35.
Zurück zum Zitat Shahsavari, R., Pellenq, J. M., & Ulm, F. J. (2011). Empirical force fields for complex hydrated calcio-silicate layered materials. Physical Chemistry Chemical Physics, 13(3), 1002–1011.CrossRef Shahsavari, R., Pellenq, J. M., & Ulm, F. J. (2011). Empirical force fields for complex hydrated calcio-silicate layered materials. Physical Chemistry Chemical Physics, 13(3), 1002–1011.CrossRef
36.
Zurück zum Zitat Aktulga, H. M., Fogarty, J. C., Pandit, S. A., & Grama, A. Y. (2012). Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel Computing, 38(4–5), 245–259.CrossRef Aktulga, H. M., Fogarty, J. C., Pandit, S. A., & Grama, A. Y. (2012). Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel Computing, 38(4–5), 245–259.CrossRef
37.
Zurück zum Zitat Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1–19.CrossRef Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1–19.CrossRef
38.
Zurück zum Zitat Hou, D., Zhao, T., Ma, H., & Li, Z. (2015). Reactive molecular simulation on water confined in the nanopores of the calcium silicate hydrate gel: Structure, reactivity, and mechanical properties. Journal of Physical Chemistry C, 119(3), 1346–1358.CrossRef Hou, D., Zhao, T., Ma, H., & Li, Z. (2015). Reactive molecular simulation on water confined in the nanopores of the calcium silicate hydrate gel: Structure, reactivity, and mechanical properties. Journal of Physical Chemistry C, 119(3), 1346–1358.CrossRef
39.
Zurück zum Zitat Jennings, H. M. (2008). Refinements to colloid model of C–S–H in cement: CM-II. Cement and Concrete Research, 38(3), 275–289.CrossRef Jennings, H. M. (2008). Refinements to colloid model of C–S–H in cement: CM-II. Cement and Concrete Research, 38(3), 275–289.CrossRef
40.
Zurück zum Zitat Muller, A. C. A., Scrivener, K. L., Gajewicz, A. M., & Mcdonald, P. J. (2013). Densification of C–S–H measured by 1H NMR relaxometry. Journal of Physical Chemistry C, 117(1), 403–412.CrossRef Muller, A. C. A., Scrivener, K. L., Gajewicz, A. M., & Mcdonald, P. J. (2013). Densification of C–S–H measured by 1H NMR relaxometry. Journal of Physical Chemistry C, 117(1), 403–412.CrossRef
41.
Zurück zum Zitat Ulm, F. J., Bazant, Z. P., & Wittmann, F. H. (2001). Micromechanical analysis of creep and shrinkage mechanisms. In Creep, shrinkage and durability of concrete and other quasi-brittle materials (p. 13). Oxford: Elsevier. Ulm, F. J., Bazant, Z. P., & Wittmann, F. H. (2001). Micromechanical analysis of creep and shrinkage mechanisms. In Creep, shrinkage and durability of concrete and other quasi-brittle materials (p. 13). Oxford: Elsevier.
42.
Zurück zum Zitat Pellenq, J. M., Lequeux, N., & Damme, H. V. (2008). Engineering the bonding scheme in C–S–H: The iono-covalent framework. Cement and Concrete Research, 38(2), 159–174.CrossRef Pellenq, J. M., Lequeux, N., & Damme, H. V. (2008). Engineering the bonding scheme in C–S–H: The iono-covalent framework. Cement and Concrete Research, 38(2), 159–174.CrossRef
43.
Zurück zum Zitat Manzano, H., Dolado, J. S., Griebel, M., & Hamaekers, J. (2010). A molecular dynamics study of the aluminosilicate chains structure in Al-rich calcium silicate hydrated (C–S–H) gels. Physica Status Solidi, 205(6), 1324–1329.CrossRef Manzano, H., Dolado, J. S., Griebel, M., & Hamaekers, J. (2010). A molecular dynamics study of the aluminosilicate chains structure in Al-rich calcium silicate hydrated (C–S–H) gels. Physica Status Solidi, 205(6), 1324–1329.CrossRef
44.
Zurück zum Zitat Qomi, M. J. A., Ulm, F. J., & Pellenq, J. M. (2012). Evidence on the dual nature of aluminum in the calcium–silicate–hydrates based on atomistic simulations. Journal of the American Ceramic Society, 95(3), 1128–1137. Qomi, M. J. A., Ulm, F. J., & Pellenq, J. M. (2012). Evidence on the dual nature of aluminum in the calcium–silicate–hydrates based on atomistic simulations. Journal of the American Ceramic Society, 95(3), 1128–1137.
45.
Zurück zum Zitat Jackson, M. D., Moon, J., Gotti, E., Taylor, R., Chae, S. R., Kunz, M., et al. (2013). Material and elastic properties of Al-tobermorite in ancient roman seawater concrete. Journal of the American Ceramic Society, 96(8), 2598–2606.CrossRef Jackson, M. D., Moon, J., Gotti, E., Taylor, R., Chae, S. R., Kunz, M., et al. (2013). Material and elastic properties of Al-tobermorite in ancient roman seawater concrete. Journal of the American Ceramic Society, 96(8), 2598–2606.CrossRef
46.
Zurück zum Zitat Geng, G., Myers, R. J., Qomi, M., & Monteiro, P. (2017). Densification of the interlayer spacing governs the nanomechanical properties of calcium–silicate–hydrate. Scientific Reports, 7(1). Geng, G., Myers, R. J., Qomi, M., & Monteiro, P. (2017). Densification of the interlayer spacing governs the nanomechanical properties of calcium–silicate–hydrate. Scientific Reports, 7(1).
47.
Zurück zum Zitat Oh, J. E., Clark, S. M., & Monteiro, P. J. M. (2011). Does the Al substitution in C–S–H(I) change its mechanical property? Cement and Concrete Research, 41(1), 102–106.CrossRef Oh, J. E., Clark, S. M., & Monteiro, P. J. M. (2011). Does the Al substitution in C–S–H(I) change its mechanical property? Cement and Concrete Research, 41(1), 102–106.CrossRef
48.
Zurück zum Zitat Hou, D., Hu, C., & Li, Z. (2017). Molecular simulation of the ions ultraconfined in the nanometer-channel of calcium silicate hydrate: Hydration mechanism, dynamic properties, and influence on the cohesive strength. Inorganic Chemistry, 56(4). Hou, D., Hu, C., & Li, Z. (2017). Molecular simulation of the ions ultraconfined in the nanometer-channel of calcium silicate hydrate: Hydration mechanism, dynamic properties, and influence on the cohesive strength. Inorganic Chemistry, 56(4).
49.
Zurück zum Zitat Rawal, A., Smith, B. J., Athens, G. L., Edwards, C. L., Roberts, L., Gupta, V., et al. (2010). Molecular silicate and aluminate species in anhydrous and hydrated cements. Journal of the American Chemical Society, 132(21), 7321–7337.CrossRef Rawal, A., Smith, B. J., Athens, G. L., Edwards, C. L., Roberts, L., Gupta, V., et al. (2010). Molecular silicate and aluminate species in anhydrous and hydrated cements. Journal of the American Chemical Society, 132(21), 7321–7337.CrossRef
50.
Zurück zum Zitat Benoit, M., Ispas, S., & Tuckerman, M. E. (2001). Structural properties of molten silicates from ab initio molecular-dynamics simulations: Comparison between CaO–Al2O3–SiO2 and SiO2. Physical Review B, 64(22), 224205. Benoit, M., Ispas, S., & Tuckerman, M. E. (2001). Structural properties of molten silicates from ab initio molecular-dynamics simulations: Comparison between CaO–Al2O3–SiO2 and SiO2. Physical Review B, 64(22), 224205.
51.
Zurück zum Zitat Cormier, L., Neuville, D. R., & Calas, G. (2000). Structure and properties of low-silica calcium aluminosilicate glasses. Journal of Non-Crystalline Solids, 274(1), 110–114.CrossRef Cormier, L., Neuville, D. R., & Calas, G. (2000). Structure and properties of low-silica calcium aluminosilicate glasses. Journal of Non-Crystalline Solids, 274(1), 110–114.CrossRef
52.
Zurück zum Zitat Youssef, M., Pellenq, R. J. M., & Yildiz, B. (2011). Glassy nature of water in an ultraconfining disordered material: The case of calcium–silicate–hydrate. Journal of the American Chemical Society, 133(8), 2499–2510.CrossRef Youssef, M., Pellenq, R. J. M., & Yildiz, B. (2011). Glassy nature of water in an ultraconfining disordered material: The case of calcium–silicate–hydrate. Journal of the American Chemical Society, 133(8), 2499–2510.CrossRef
53.
Zurück zum Zitat Korb, J. P., & Monteilhet, L. (2007). Microstructure and texture of hydrated cement-based materials: A proton field cycling relaxometry approach. Cement and Concrete Research, 37(3), 295–302.CrossRef Korb, J. P., & Monteilhet, L. (2007). Microstructure and texture of hydrated cement-based materials: A proton field cycling relaxometry approach. Cement and Concrete Research, 37(3), 295–302.CrossRef
54.
Zurück zum Zitat Bordallo, H. N., Aldridge, L. P., & Desmedt, A. (2006). Water dynamics in hardened ordinary Portland cement paste or concrete: From quasielastic neutron scattering. Journal of Physical Chemistry B, 110(36), 17966–17976.CrossRef Bordallo, H. N., Aldridge, L. P., & Desmedt, A. (2006). Water dynamics in hardened ordinary Portland cement paste or concrete: From quasielastic neutron scattering. Journal of Physical Chemistry B, 110(36), 17966–17976.CrossRef
55.
Zurück zum Zitat Kocks, U. F., & Mecking, H. (2003). Physics and phenomenology of strain hardening: The FCC case. Progress in Materials Science, 48(3), 171–273.CrossRef Kocks, U. F., & Mecking, H. (2003). Physics and phenomenology of strain hardening: The FCC case. Progress in Materials Science, 48(3), 171–273.CrossRef
56.
Zurück zum Zitat Liu, L., Jaramillo-Botero, A., Goddard, W. A., & Sun, H. (2012). Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations. Journal of Physical Chemistry A, 116(15), 3918–3925.CrossRef Liu, L., Jaramillo-Botero, A., Goddard, W. A., & Sun, H. (2012). Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations. Journal of Physical Chemistry A, 116(15), 3918–3925.CrossRef
57.
Zurück zum Zitat Bonnaud, P. A., Ji, Q., Coasne, B., Pellenq, R. J., & Van Vliet, K. J. (2012). Thermodynamics of water confined in porous calcium–silicate–hydrates. Langmuir: The ACS Journal of Surfaces & Colloids, 28(31), 11422.CrossRef Bonnaud, P. A., Ji, Q., Coasne, B., Pellenq, R. J., & Van Vliet, K. J. (2012). Thermodynamics of water confined in porous calcium–silicate–hydrates. Langmuir: The ACS Journal of Surfaces & Colloids, 28(31), 11422.CrossRef
58.
Zurück zum Zitat Hou, D., Ma, H., Li, Z., & Jin, Z. (2014). Molecular simulation of “hydrolytic weakening”: A case study on silica. Acta Materialia, 80, 264–277.CrossRef Hou, D., Ma, H., Li, Z., & Jin, Z. (2014). Molecular simulation of “hydrolytic weakening”: A case study on silica. Acta Materialia, 80, 264–277.CrossRef
59.
Zurück zum Zitat Zhu, T., Li, J., Lin, X., & Yip, S. (2005). Stress-dependent molecular pathways of silica–water reaction. Journal of the Mechanics and Physics of Solids, 53(7), 1597–1623.CrossRef Zhu, T., Li, J., Lin, X., & Yip, S. (2005). Stress-dependent molecular pathways of silica–water reaction. Journal of the Mechanics and Physics of Solids, 53(7), 1597–1623.CrossRef
60.
Zurück zum Zitat Manzano, H., Durgun, E., López-Arbeloa, I., & Grossman, J. C. (2015). Insight on tricalcium silicate hydration and dissolution mechanism from molecular simulations. ACS Applied Materials & Interfaces, 7(27), 14726–14733.CrossRef Manzano, H., Durgun, E., López-Arbeloa, I., & Grossman, J. C. (2015). Insight on tricalcium silicate hydration and dissolution mechanism from molecular simulations. ACS Applied Materials & Interfaces, 7(27), 14726–14733.CrossRef
Metadaten
Titel
Models for the Cross-Linked Calcium Aluminate Silicate Hydrate (C–A–S–H) Gel
verfasst von
Dongshuai Hou
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8711-1_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.